A Survey of Tools and Techniques for Web Attack Detection
Tóm tắt
Từ khóa
#Các dạng tấn công web #Phát hiện các dạng tấn công web #Phát hiện tấn công web sử dụng chữ ký #Phát hiện tấn công web sử dụng học máyTài liệu tham khảo
OWASP, Open Web Application Security Project, http://www.owasp.org, accessed 1.2021.
Hoàng Xuân Dậu, An toàn ứng dụng web và cơ sở dữ liệu, Học viện Công nghệ Bưu Chính Viễn Thông, 2017.
Hoang, X.D. Detecting Common Web Attacks Based on Machine Learning Using Weblog. K.-U. Sattler et al. (Eds.): ICERA 2020, LNNS 178, pp. 311–318, 2021.
VNCS – Giải pháp giám sát website tập trung, http://vncs.vn/portfolio/giai-phap-giam-sat-websites-tap-trung, accessed 1.2021.
Nagios Web Application Monitoring Software, https://www.nagios.com/solutions/web-application-monitoring/, accessed 1.2021.
Site24x7, Website Defacement Monitoring, https://www.site24x7.com/monitor-webpagedefacement.html, accessed 1.2021.
Mod Security, https://www.modsecurity.org, accessed 1.2021.
Snort IDS, http://www.snort.org, accessed 1.2021.
Abhishek Kumar Baranwal, Approaches to detect SQL injection and XSS in web applications, EECE 571B, Term Survey Paper, University of British Columbia, Canada, 2012.
OWASP ModSecurity Core Rule Set, https://www.owasp.org/index.php/Category: OWASP_ModSecurity_Core_Rule_Set_Project, accessed 1.2021.
Kemalis, K. and T. Tzouramanis. SQL-IDS: A Specification-based Approach for SQLinjection Detection. SAC’08. Fortaleza, Ceará, Brazil, ACM (2008), pp. 2153-2158.
P. Bisht, and V.N. Venkatakrishnan, “XSS-GUARD: Precise dynamic prevention of Cross-Site Scripting Attacks,” In Proceeding of 5th Conference on Detection of Intrusions and Malware & Vulnerability Assessment, LNCS 5137, 2008, pp. 23-43.
Doyen Sahoo, Chenghao Liu, and Steven C.H. Hoi, Malicious URL Detection using Machine Learning: A Survey, https://arxiv.org/abs/1701.07179, Mar 2017.
Gustavo Betarte, Eduardo Giménez, Rodrigo Martínez, and Álvaro Pardo, Machine learning-assisted virtual patching of web applications, https://arxiv.org/abs/1803.05529, Mar 2018.
Carmen Torrano-Gimenez, Alejandro Pérez-Villegas and Gonzalo Alvarez, An Anomaly-Based Approach for Intrusion Detection in Web Traffic, published by The Allen Institute for Artificial Intelligence, 2009.
Jingxi Liang, Wen Zhao and Wei Ye. “Anomaly-Based Web Attack Detection: A Deep Learning Approach”. ICNCC 2017, Kunming, China, December 8-10, 2017.
Yao Pan, Fangzhou Sun, Zhongwei Teng, Jules White, Douglas C. Schmidt, Jacob Staples and Lee Krause. “Detecting web attacks with end-to-end deep learning”. Journal of Internet Services and Applications (2019) 10:16, SpringerOpen.
HTTP DATASET CSIC 2010, https://www.isi. csic.es/dataset/, accessed 1.2021.
HTTP Param Dataset, https://github.com/ Morzeux/ HttpParamsDataset, accessed 1.2021.
A. Smola and S.V.N. Vishwanathan, “Introduction to Machine Learning,” Cambridge University, 2008.