A Strategy for Synthesis of Carbon Nitride Induced Chemically Doped 2D MXene for High‐Performance Supercapacitor Electrodes

Advanced Energy Materials - Tập 8 Số 15 - 2018
Yeoheung Yoon1,2, Minhe Lee2, Seong Ku Kim2, Garam Bae3,2, Wooseok Song2, Sung Myung2, Jongsun Lim2, Sun Sook Lee2, Taehyoung Zyung2, Ki‐Seok An2
1Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
2Thin Film Materials Research Center, Korea Research Institute of Chemical Technology, Yuseong, Post Office Box 107, Daejeon, 34114 Republic of Korea
3Department of Physics, Sungkyunkwan University, Suwon, 16419, Republic of Korea

Tóm tắt

AbstractA step‐by‐step strategy is reported for improving capacitance of supercapacitor electrodes by synthesizing nitrogen‐doped 2D Ti2CTx induced by polymeric carbon nitride (p‐C3N4), which simultaneously acts as a nitrogen source and intercalant. The NH2CN (cyanamide) can form p‐C3N4 on the surface of Ti2CTx nanosheets by a condensation reaction at 500–700 °C. The p‐C3N4 and Ti2CTx complexes are then heat‐treated to obtain nitrogen‐doped Ti2CTx nanosheets. The triazine‐based p‐C3N4 decomposes above 700 °C; thus, the nitrogen species can be surely doped into the internal carbon layer and/or defect site of Ti2CTx nanosheets at 900 °C. The extended interlayer distance and c‐lattice parameters (c‐LPs of 28.66 Å) of Ti2CTx prove that the p‐C3N4 grown between layers delaminate the nanosheets of Ti2CTx during the doping process. Moreover, 15.48% nitrogen doping in Ti2CTx improves the electrochemical performance and energy storage ability. Due to the synergetic effect of delaminated structures and heteroatom compositions, N‐doped Ti2CTx shows excellent characteristics as an electrochemical capacitor electrode, such as perfectly rectangular cyclic voltammetry results (CVs, R2 = 0.9999), high capacitance (327 F g−1 at 1 A g−1, increased by ≈140% over pristine‐Ti2CTx), and stable long cyclic performance (96.2% capacitance retention after 5000 cycles) at high current density (5 A g−1).

Từ khóa


Tài liệu tham khảo

10.1038/nmat2297

10.1063/1.118568

10.1038/nmat1782

10.1088/0957-4484/27/17/172001

10.1126/science.1184126

10.1002/adma.201301230

10.1021/nn500150j

10.1126/science.1213003

10.1002/adma.201304138

10.1002/adma.201102306

10.1021/nn204153h

Xue Q., 2017, Adv. Mater., 29, 160847

10.1126/science.1241488

10.1038/nature13970

10.1016/j.jpowsour.2015.06.082

10.1016/j.jpowsour.2017.08.029

10.1002/aelm.201600050

10.1021/cm500641a

10.1038/ncomms2664

10.1021/acs.chemmater.6b01275

10.1016/j.elecom.2014.09.002

10.1002/aenm.201600969

10.1039/C7RA00126F

10.1038/natrevmats.2016.98

10.1002/adma.201500604

10.1073/pnas.1414215111

10.1002/aenm.201602725

10.1002/adma.201201920

10.1021/nl2009058

10.1039/C0EE00277A

10.1016/j.nanoen.2017.06.009

10.1016/j.electacta.2016.12.173

10.1149/2.1091709jes

10.1039/C4NR03145H

10.1039/b800274f

10.1021/acsnano.7b01908

10.1111/jace.15124

10.1016/j.apsusc.2015.11.089

10.1016/j.surfcoat.2007.12.038

10.1039/C0CC03530K

10.1002/chem.201201901

10.1002/anie.201509758

10.1016/j.apsusc.2014.01.010

10.1126/science.1194372