A Simple and reliable formula for assessment of maximum volumetric productivities in photobioreactors

Biotechnology Progress - Tập 25 Số 2 - Trang 424-435 - 2009
Jean‐François Cornet1, Claude‐Gilles Dussap1
1Clermont Université, Laboratoire de Génie Chimique et Biochimique, Bât. Polytech. 24, avenue des Landais, BP 206, 63174 AUBIERE Cedex, France

Tóm tắt

AbstractThis article establishes and discusses the consistency and the range of applicability of a simple but general and predictive analytical formula, enabling to easily assess the maximum volumetric biomass growth rates (the productivities) in several kinds of photobioreactors with more or less 15% of deviation. Experimental validations are performed on photobioreactors of very different conceptions and designs, cultivating the cyanobacterium Arthrospira platensis, on a wide range of volumes and hemispherical incident light fluxes. The practical usefulness of the proposed formula is demonstrated by the fact that it appears completely independent of the characteristics of the material phase (as the type of reactor, the kind of mixing, the biomass concentration…), according to the first principle of thermodynamics and to the Gauss‐Ostrogradsky theorem. Its ability to give the maximum (only) kinetic performance of photobioreactors cultivating many different photoautotrophic strains (cyanobacteria, green algae, eukaryotic microalgae) is theoretically discussed but experimental results are reported to a future work of the authors or to any other contribution arising from the scientific community working in the field of photobioreactor engineering and potentially interested by this approach. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009

Từ khóa


Tài liệu tham khảo

10.1080/07388550290789513

10.1263/jbb.101.87

10.1016/j.biotechadv.2007.02.001

10.1007/s002530100702

10.1021/bp060065r

10.1016/S0168-1656(99)00081-4

Cornet J‐F, 2007, Procédés limités par le transfert de rayonnement en milieu hétérogène. Etude des couplages cinétiques et énergétiques dans les photobioréacteurs par une approche thermodynamique

10.1007/s10126-007-9077-2

Kreinovich V, 2000, How important is theory for practical problems? A partial explanation of Hartmanis' observation, Bull Eur Assoc Theor Comput Sci, 71, 160

Aiba S, 1982, Growth kinetics of photosynthetic microorganisms, Adv Biochem Eng, 23, 85

10.1002/bit.260400709

10.1007/BFb0102299

10.1021/ie00046a001

10.1023/A:1017974232510

10.1002/bit.10669

10.1016/j.ces.2008.04.026

10.1002/bit.260400710

10.1002/bit.10504

10.1021/bp034041l

10.1002/aic.690400616

10.1016/j.ijhydene.2007.08.018

10.1002/bit.20475

10.1002/btpr.95

10.1016/0009-2509(95)00022-W

Cornet JF, 2001, 227

Paillotin G, 1974, Etude théorique des modes de création, de transport et d'utilisation de l'énergie d'excitation électronique chez les plantes supérieures

10.1115/1.3268177

Bejan A, 1988, Advanced Engineering Thermodynamics

Duysens LNM, 1959, Brookhaven Symp Biol, 11, 10

Roels JA, 1983, Energetics and Kinetics in Biotechnology

MengualX AlbiolJ GodiaF. General purpose station 98.Technical Note 43.7; ESA contract 11549/95/NL/FG MELiSSA Project 2000.

10.1021/bp010010j

10.1023/A:1008046814640

Chandrasekhar S, 1960, Radiative Transfer

Siegel R, 2002, Thermal Radiation Heat Transfer

10.1080/009864490510635