A Similarity Function for Feature Pattern Clustering and High Dimensional Text Document Classification
Tóm tắt
Tài liệu tham khảo
Bingham, E., & Mannila, H. (2001). Random projection in dimensionality reduction: applications to image and text data. In Proceedings of the seventh ACM SIGKDD international conference on Knowledge discovery and data mining (KDD’01) (pp. 245–250). New York, NY: ACM. http://dx.doi.org/10.1145/502512.502546D.
Gaber, M. M., Zaslavsky, A., & Krishnaswamy, S. (2005). Mining data streams—A review. SIGMODC Record, 34(2), 18–26.
Han, J., Kamber, M., & Pei, J. (Eds.). (2012a). Advanced cluster analysis. In The morgan kaufmann series in data management systems, data mining (3rd ed., pp. 497–541). Morgan Kaufmann. https://doi.org/10.1016/B978-0-12-381479-1.00011-3.
Han, J., Kamber, M., & Pei, J. (Eds.). (2012b). Classification: Basic concepts. In The morgan kaufmann series in data management systems, data mining (3rd ed., pp. 327–391). Morgan Kaufmann. https://doi.org/10.1016/B978-0-12-381479-1.00008-3.
Hyvarinen, A., Karhunen, J., & Oja, E. (2004). Independent component analysis. Hoboken: Wiley.
Jiang, J. Y., Cheng, W. H., Chiou, Y. S., & Lee, S. J. (2011a). A similarity measure for text processing. In 2011 international conference on machine learning and cybernetics, Guilin (pp. 1460–1465). https://doi.org/10.1109/icmlc.2011.6016998.
Jiang, J. Y., Liou, R. J., & Lee, S. J. (2011b). A fuzzy self-constructing feature clustering algorithm for text classification. IEEE Transactions on Knowledge and Data Engineering, 23(3), 335–349. https://doi.org/10.1109/TKDE.2010.122.
Johnson, R. A., & Wichern, D. W. (2007). Applied multivariate statistical analysis (6th ed.). Upper Saddle River: Prentice Hall.
Lin, Y. S., Jiang, J. Y., & Lee, S. J. (2014). A similarity measure for text classification and clustering. IEEE Transactions on Knowledge and Data Engineering, 26(7), 1575–1590. https://doi.org/10.1109/TKDE.2013.19.
Radhakrishna, V., Aljawarneh, S. A., Kumar, P. V, et al. (2017c). ASTRA—A novel interest measure for unearthing latent temporal associations and trends through extending basic Gaussian membership function. Multimedia Tools and Applications. https://doi.org/10.1007/s11042-017-5280-y.
Radhakrishna, V., Kumar, P. V., & Janaki, V. (2017g). Design and analysis of similarity measure for discovering similarity profiled temporal association patterns. IADIS International Journal on Computer Science and Information Systems, 12(1), 45–60.
Radhakrishna, V., Kumar, P. V., & Janaki, V. (2018). Krishna Sudarsana: A Z-space similarity measure. In Proceedings of the fourth international conference on engineering & MIS 2018 (ICEMIS’18). New York, NY: ACM, Article 44, 4 pp.
Radhakrishna, V., Kumar, P. V., Janaki, V., & Cheruvu, A. (2017i). A dissimilarity measure for mining similar temporal association patterns. IADIS International Journal on Computer Science and Information Systems, 12(1), 126–142.
Sammulal, P., Usha Rani, Y., & Yepuri, A. (2017). A class based clustering approach for imputation and mining of medical records (CBC-IM). IADIS International Journal on Computer Science & Information Systems, 12(1), 61–74.
SureshReddy, G., Rajinikanth, T. V., & Ananda Rao, A. (2014). Design and analysis of novel similarity measure for clustering and classification of high dimensional text documents. In B. Rachev & A. Smrikarov (Eds.), Proceedings of the 15th international conference on computer systems and technologies (CompSysTech’14) (pp. 194–201). New York, NY: ACM. http://dx.doi.org/10.1145/2659532.2659615.
Tatbul, N., & Zdonik, S. (2006). A subset-based load shedding approach for aggregation queries over data streams. In Proceedings of international conference on very large data bases (VLDB).
Tsai, S. C., Jiang, J. Y., Wu, C., & Lee, S. J. (2009). A fuzzy similarity-based approach for multi-label document classification. In 2009 second international workshop on computer science and engineering, Qingdao (pp. 59–63). https://doi.org/10.1109/wcse.2009.766.