A SPH framework for dynamic interaction between soil and rigid body system with hybrid contact method

Ling Zhan1, Chong Peng2,3, Bingyin Zhang1, Wei Wu3
1State Key Laboratory of Hydroscience and Engineering, Tsinghua University, Beijing 100084, China
2ESS Engineering Software Steyr GmbH, Berggasse 35, Steyr 4400, Austria
3Institut für Geotechnik, Universität für Bodenkultur Vienna 1180 Austria

Tóm tắt

SummaryA smoothed particle hydrodynamics (SPH) framework for three‐dimensional dynamic soil‐multibody interaction modeling is presented, where both soils and rigid bodies are discretized using SPH particles. In the framework, soils are modeled using the Drucker‐Prager model, while rigid bodies are considered with a multibody dynamics solver. A hybrid contact method suitable for three‐dimensional simulations is developed to model the soil‐body and body‐body frictionless and frictional contacts, where contact forces are calculated based on ideal plastic collision and the unit normal/tangential vectors of the actual surface. Owing to its simplicity in contact detection and accuracy in contact force calculation, the hybrid contact method can be easily incorporated into SPH. Furthermore, graphics processing unit (GPU) parallelization is utilized to improve efficiency. The presented numerical framework and the hybrid contact method are validated using several examples. Numerical results are compared with analytical solutions and results from the literature. Furthermore, two three‐dimensional simulations involving dynamic soil‐multibody interaction are included to demonstrate the application.

Từ khóa


Tài liệu tham khảo

Iverson RM, 2003, Debris‐flow Hazards Mitigation: Mechanics, Prediction, and Assessment, 303

10.1007/s11069-011-0007-2

10.1061/(ASCE)1090-0241(2006)132:12(1538)

WasfyTM WasfyHM PetersJM.Coupled multibody dynamics and discrete element modeling of vehicle mobility on cohesive granular terrains. In: ASME 2014 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference.American Society of Mechanical Engineers;2014;Buffalo New York USA:V006T10A050.

10.1088/0034-4885/68/8/R01

10.1002/nme.5183

Bardenhagen SG, 2004, The generalized interpolation material point method, Comput Model Eng Sci, 5, 477

10.1002/nag.688

10.1002/nag.2253

10.1007/s11440-016-0496-y

10.1007/s11440-015-0399-3

10.1016/j.compgeo.2019.03.019

10.1016/j.jfluidstructs.2013.05.010

10.1002/fld.4031

10.1016/j.jfluidstructs.2019.02.002

10.1007/s11440-018-0700-3

10.1016/j.jcp.2012.05.005

10.1016/S0045-7825(99)00442-9

10.1051/meca:2008022

10.1016/j.ijmecsci.2019.05.003

10.1016/j.ijimpeng.2007.04.009

10.1006/jcph.1997.5681

10.1002/nag.2233

10.1016/j.triboint.2015.11.038

10.1016/j.cma.2009.06.022

10.1007/BF02123482

10.1016/0010-4655(88)90026-4

10.1007/s10346-016-0681-y

10.1007/s11440-019-00839-1

10.1115/1.1445305

10.1016/0045-7825(93)90064-5

10.1016/S0895-7177(98)00138-1

10.1016/0021-9991(89)90032-6

10.1016/j.cageo.2012.02.029

10.1016/j.cpc.2014.10.004

10.1016/j.cpc.2012.10.015

10.1007/s42241-019-0058-5

10.1016/j.advwatres.2016.04.009

PengC WuW YuHS.A GPU‐Accelerated Three‐Dimensional SPH Solver for Geotechnical Applications. In: Proceedings of China‐Europe Conference on Geotechnical Engineering.Springer;2018;Vienna Austria:398‐401.

10.1007/s11044-011-9262-y

10.1115/1.3625019

10.1006/jcph.1993.1199