A Review of the Antioxidant Mechanisms of Polyphenol Compounds Related to Iron Binding

Cell Biochemistry and Biophysics - Tập 53 Số 2 - Trang 75-100 - 2009
Nathan R. Perron1, Julia L. Brumaghim2
1Department of Chemistry, Clemson University, 481 Hunter Laboratories, P.O. Box 340973, Clemson, SC 29634-0973, USA.
2Department of Chemistry, Clemson University,Clemson,USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Kühnau, J. (1976). The flavonoids: A class of semi-essential food components: Their role in human nutrition. World Review of Nutrition and Dietetics, 24, 117–191.

Sutherland, B. A., Rahman, R. M. A., & Appleton, I. (2006). Mechanisms of action of green tea catechins, with a focus on ischemia-induced neurodegeneration. The Journal of Nutritional Biochemistry, 17, 291–306.

Cabrera, C., Artacho, R., & Gimenez, R. (2006). Beneficial effects of green tea—A review. Journal of the American College of Nutrition, 25, 79–99.

Gardner, E. J., Ruxton, C. H. S., & Leeds, A. R. (2007). Black tea—Helpful or harmful? A review of the evidence. European Journal of Clinical Nutrition, 61, 3–18.

Vinson, J. A. (1998). Flavonoids in foods as in vitro and in vivo antioxidants. Advances in Experimental Medicine and Biology, 439, 151–164.

Nardini, M., Cirillo, E., Natella, F., & Scaccini, C. (2002). Absorption of phenolic acids in humans after coffee consumption. Journal of Agricultural and Food Chemistry, 50, 5735–5741.

Vinson, J. A., Su, X., Zubik, L., & Bose, P. (2001). Phenol antioxidant quantity and quality in foods: Fruits. Journal of Agricultural and Food Chemistry, 49, 5315–5321.

Mertens-Talcott, S. U., Jilma-Stohlawetz, P., Rios, J., Hingorani, L., & Derendorf, H. (2006). Absorption, metabolism, and antioxidant effects of pomegranate (Punica granatum L.) polyphenols after ingestion of a standardized extract in healthy human volunteers. Journal of Agricultural and Food Chemistry, 54, 8956–8961.

Seeram, N. P., Aviram, M., Zhang, Y., Henning, S. M., Feng, L., Dreher, M., et al. (2008). Comparison of antioxidant potency of commonly consumed polyphenol-rich beverages in the United States. Journal of Agricultural and Food Chemistry, 56, 1415–1422.

Garcia-Alonso, F. J., Guidarelli, A., & Periago, M. J. (2007). Phenolic-rich juice prevents DNA single-strand breakage and cytotoxicity caused by tert-butylhydroperoxide in U937 cells: The role of iron chelation. The Journal of Nutritional Biochemistry, 18, 457–466.

Gil, M. I., Tomás-Barberán, F. A., Hess-Pierce, B., Holcroft, D. M., & Kader, A. A. (2000). Antioxidant activity of pomegranate juice and its relationship with phenolic composition and processing. Journal of Agricultural and Food Chemistry, 48, 4581–4589.

Vinson, J. A., Hao, Y., Su, X., & Zubik, L. (1998). Phenol antioxidant quantity and quality in foods: Vegetables. Journal of Agricultural and Food Chemistry, 46, 3630–3634.

Oboh, G., & Rocha, J. B. T. (2007). Polyphenols in red pepper [Capsicum annuum var. aviculare (Tepin)] and their protective effect on some pro-oxidants induced lipid peroxidation in brain and liver. European Food Research and Technology, 225, 239–247.

Gutiérrez, F., Arnaud, T., & Garrido, A. (2001). Contribution of polyphenols to the oxidative stability of virgin olive oil. Journal of the Science of Food and Agriculture, 81, 1463–1470.

Visioli, F., Bellomo, G., & Galli, C. (1998). Free radical-scavenging properties of olive oil polyphenols. Biochemical and Biophysical Research Communications, 247, 60–64.

Lodovici, M., Guglielmi, F., Casalini, C., Meoni, M., Cheynier, V., & Dolara, P. (2001). Antioxidant and radical scavenging properties in vitro of polyphenolic extracts from red wine. European Journal of Nutrition, 40, 74–77.

Makris, D. P., Psarra, E., Kallithraka, S., & Kefalas, P. (2003). The effect of polyphenolic composition as related to antioxidant capacity in white wines. Food Research International (Ottawa, Ont.), 36, 805–814.

Vinson, J. A., Proch, J., & Zubik, L. (1999). Phenol antioxidant quantity and quality in foods: Cocoa, dark chocolate, and milk chocolate. Journal of Agricultural and Food Chemistry, 47, 4821–4824.

Arts, I. C. W., Van de Putte, B., & Hollman, P. C. H. (2000). Catechin contents of foods commonly consumed in the Netherlands. Part 2. Tea, wine, fruit juices, and chocolate milk. Journal of Agricultural and Food Chemistry, 48, 1752–1757.

Arts, I. C. W., Van de Putte, B., & Hollman, P. C. H. (2000). Catechin contents of foods commonly consumed in the Netherlands. Part 1. Fruits, vegetables, staple foods, and processed foods. Journal of Agricultural and Food Chemistry, 48, 1746–1751.

de Pascual-Teresa, S., Santos-Buelga, C., & Rivas-Gonzalo, J. C. (2000). Quantitative analysis of flavan-3-ols in Spanish foodstuffs and beverages. Journal of Agricultural and Food Chemistry, 48, 5331–5337.

USDA. (2004). USDA database for the proanthocyanidin content of selected foods. Accessed December 18, 2008, from http://www.nal.usda.gov/fnic/foodcomp/Data/PA/PA.pdf .

“5 A Day”. (2008). Accessed April 9, 2008, from www.cdc.gov/nccdphp/dnpa/5aday/index.htm .

Graham, H. N. (1992). Green tea composition, consumption, and polyphenol chemistry. Preventive Medicine, 21, 334–350.

Reddy, V. C., Sagar, G. V. V., Sreeramulu, D., Venu, L., & Raghunath, M. (2005). Addition of milk does not alter the antioxidant activity of black tea. Annals of Nutrition and Metabolism, 49, 189–195.

Sugisawa, A., & Umegaki, K. (2002). Physiological concentrations of (−)-epigallocatechin-3-O-gallate (EGCg) prevent chromosomal damage induced by reactive oxygen species in WIL2-NS cells. Journal of Nutrition, 132, 1836–1839.

Van het Hof, K. H., Kivits, G. A. A., Weststrate, J. A., & Tijburg, L. B. M. (1998). Bioavailability of catechins from tea: The effect of milk. European Journal of Clinical Nutrition, 52, 356–359.

Yang, C. S., Chen, L., Lee, M.-J., Balentine, D., Kuo, M. C., & Schantz, S. P. (1998). Blood and urine levels of tea catechins after ingestion of different amounts of green tea by human volunteers. Cancer Epidemiology, Biomarkers and Prevention, 7, 351–354.

Yamamoto, T., Hsu, S., Lewis, J., Wataha, J., Dickinson, D., Singh, B., et al. (2003). Green tea polyphenol causes differential oxidative environments in tumor versus normal epithelial cells. The Journal of Pharmacology and Experimental Therapeutics, 307, 230–236.

Erlund, I., Silaste, M. L., Alfthan, G., Rantala, M., Kesaniemi, Y. A., & Aro, A. (2002). Plasma concentrations of the flavonoids hesperetin, naringenin and quercetin in human subjects following their habitual diets, and diets high or low in fruit and vegetables. European Journal of Clinical Nutrition, 56, 891–898.

Hollman, P. C. H., Gaag, M. V. D., Mengelers, M. J. B., van Trijp, J. M. P., de Vries, J. H. M., & Katan, M. B. (1996). Absorption and disposition kinetics of the dietary antioxidant quercetin in man. Free Radical Biology and Medicine, 21, 703–707.

Nitta, Y., Kikuzaki, H., & Ueno, H. (2007). Food components inhibiting recombinant human histidine decarboxylase activity. Journal of Agricultural and Food Chemistry, 55, 299–304.

Macheix, J.-J., Fleuriet, A., & Billot, J. (1990). Fruit Phenolics (pp. 272–273). Boca Raton: CRC Press, Inc.

Romero, C., Medina, E., Vargas, J., Brenes, M., & De Castro, A. (2007). In vitro activity of olive oil polyphenols against Helicobacter pylori. Journal of Agricultural and Food Chemistry, 55, 680–686.

Song, J.-M., Lee, K.-H., & Seong, B.-L. (2005). Antiviral effect of catechins in green tea on influenza virus. Antiviral Research, 68, 66–74.

Lorenz, M., Jochmann, N., von Krosigk, A., Martus, P., Baumann, G., Stangl, K., et al. (2007). Addition of milk prevents vascular protective effects of tea. European Heart Journal, 28, 219–223.

Hertog, M. G. L., Feskens, E. J. M., Hollman, P. C. H., Katan, M. B., & Kromhout, D. (1993). Dietary antioxidant flavonoids and risk of coronary heart disease. The Zutphen elderly study. Lancet, 342, 1007–1011.

Naasani, I., Oh-hashi, F., Oh-hara, T., Feng, W. Y., Johnston, J., Chan, K., et al. (2003). Blocking telomerase by dietary polyphenols is a major mechanism for limiting the growth of human cancer cells in vitro and in vivo. Cancer Research, 63, 824–830.

He, Q., Lv, Y., & Yao, K. (2006). Effects of tea polyphenols on the activities of α-amylase, pepsin, trypsin and lipase. Food Chemistry, 101, 1178–1182.

Mandel, S. A., Amit, T., Zheng, H., Weinreb, O., & Youdim, M. B. H. (2006). The essentiality of iron chelation in neuroprotection: A potential role of green tea catechins. Oxidative Stress and Disease, 22, 277–299.

Lambert, J. D., & Yang, C. S. (2003). Mechanisms of cancer prevention by tea constituents. Journal of Nutrition, 133(Suppl), 3262S–3267S.

Fresco, P., Borges, F., Diniz, C., & Marques, M. P. M. (2006). New insights on the anticancer properties of dietary polyphenols. Medicinal Research Reviews, 26, 747–766.

Garg, A. K., Buchholz, T. A., & Aggarwal, B. B. (2005). Chemosensitization and radiosensitization of tumors by plant polyphenols. Antioxidants and Redox Signaling, 7, 1630–1647.

Stoner, G. D., & Casto, B. C. (2004). Chemoprevention by fruit phenolic compounds. In G. J. Kelloff, E. T. Hawk, & C. C. Sigman (Eds.), Cancer chemoprevention (pp. 419–435). Totowa, NJ: Humana Press, Inc.

Horvathova, K., Novotny, L., Tothova, D., & Vachalkova, A. (2004). Determination of free radical scavenging activity of quercetin, rutin, luteolin and apigenin in H2O2-treated human ML cells K562. Neoplasma, 51, 395–399.

Inoue, M., Suzuki, R., Koide, T., Sakaguchi, N., Ogihara, Y., & Yabu, Y. (1994). Antioxidant, gallic acid, induces apoptosis in HL-60RG cells. Biochemical and Biophysical Research Communications, 204, 898–904.

Orrenius, S., Gogvadze, V., & Zhivotovsky, B. (2007). Mitochondrial oxidative stress: Implications for cell death. Annual Review of Pharmacology and Toxicology, 47, 143–183.

Huang, X. (2003). Iron overload and its association with cancer risk in humans: Evidence for iron as a carcinogenic metal. Mutation Research, 533, 153–171.

Hajiliadis, N. D. (Ed.). (1997). Cytotoxic, mutagenic, and carcinogenic potential of heavy metals related to human environment. Netherlands: Kluwer Academic Press.

Markesbery, W. R., & Lovell, M. A. (2006). DNA oxidation in Alzheimer’s disease. Antioxidants and Redox Signaling, 8, 2039–2045.

Halliwell, B. (2001). Role of free radicals in the neurodegenerative diseases. Drugs and Aging, 18, 685–716.

Markesbery, W. R. (1997). Oxidative stress hypothesis in Alzheimer’s disease. Free Radical Biology and Medicine, 23, 134–147.

Markesbery, W. R. (1999). Oxidative alterations in Alzheimer’s disease. Brain Pathology, 9, 133–146.

Drew, B., & Leeuwenburgh, C. (2002). Aging and the role of reactive nitrogen species. Annals of the New York Academy of Sciences, 959, 66–81.

Vokurkova, M., Xu, S., & Touyz, R. M. (2007). Reactive oxygen species, cell growth, cell cycle progression and vascular remodeling in hypertension. Future Cardiology, 3, 53–63.

Steinberg, D. (1997). Low density lipoprotein oxidation and its pathobiological significance. The Journal of Biological Chemistry, 272, 20963–20966.

Ide, T., Tsutsui, H., Hayashidani, S., Kang, D., Suematsu, N., Nakamura, K.-I., et al. (2001). Mitochondrial DNA damage and dysfunction associated with oxidative stress in failing hearts after myocardial infarction. Circulation Research, 88, 529–535.

Chevion, M., Berenshtein, E., & Zhu, B.-Z. (1999). The role of transition metal ions in free radical-mediated damage. In D. L. Gilbert & C. A. Colton (Eds.), Reactive oxygen species in biological systems (pp. 103–131). New York: Plenum Publishers.

SciFinder search on May 5, 2008 using the terms “polyphenol” and “radical scavenging”, refined by year 1995–current (duplicate entries removed).

Hanasaki, Y., Ogawa, S., & Fukui, S. (1994). The correlation between active oxygens scavenging and antioxidative effects of flavonoids. Free Radical Biology and Medicine, 16, 845–850.

Bors, W., Heller, W., Michel, C., & Saran, M. (1990). Flavonoids as antioxidants: Determination of radical-scavenging efficiencies. Methods in Enzymology, 186, 343–355.

Muzolf, M., Szymusiak, H., Swiglo, A. G., Rietjens, I. M. C. M., & Tyrakowska, B. (2008). pH-dependent radical scavenging capacity of green tea catechins. Journal of Agricultural and Food Chemistry, 56, 816–823.

Nanjo, F., Goto, K., Seto, R., Suzuki, M., Sakai, M., & Hara, Y. (1996). Scavenging effects of tea catechins and their derivatives on 1, 1-diphenyl-2-picrylhydrazyl radical. Free Radical Biology and Medicine, 21, 895–902.

Borkowski, T., Szymusiak, H., Gliszczynska-Swiglo, A., Rietjens, I. M. C. M., & Tyrakowska, B. (2005). Radical scavenging capacity of wine anthocyanins is strongly pH-dependent. Journal of Agricultural and Food Chemistry, 53, 5526–5534.

van Acker, S. A. B. E., Tromp, M. N. J. L., Haenen, G. R. M. M., van der Vijgh, W. J. F., & Bast, A. (1995). Flavonoids as scavengers of nitric oxide radical. Biochemical and Biophysical Research Communications, 214, 755–759.

Furuno, K., Akasako, T., & Sugihara, N. (2002). The contribution of the pyrogallol moiety to the superoxide radical scavenging activity of flavonoids. Biological and Pharmaceutical Bulletin, 25, 19–23.

Keyer, K., Gort, A. S., & Imlay, J. A. (1995). Superoxide and the production of oxidative DNA damage. Journal of Bacteriology, 177, 6782–6790.

Cos, P., Ying, L., Calomme, M., Hu, J. P., Cimanga, K., Poel, B. V., et al. (1998). Structure–activity relationship and classification of flavonoids as inhibitors of xanthine oxidase and superoxide scavengers. Journal of Natural Products, 61, 71–76.

Arts, M. J. T. J., Dallinga, J. S., Voss, H.-P., Haenen, G. R. M. M., & Bast, A. (2004). A new approach to asses the total antioxidant capacity using the TEAC assay. Food Chemistry, 88, 567–570.

Prior, R. L., Wu, X., & Schaich, K. (2005). Standardized methods for the determination of antioxidant capacity of phenolics in foods and dietary supplements. Journal of Agricultural and Food Chemistry, 53, 4290–4302.

Sharma, A., Bhardwaj, S., Mann, A. S., Jain, A., & Kharya, M. D. (2007). Screening methods of antioxidant activity: An overview. Pharmacognosy Reviews, 1, 232–238.

Huang, D., Ou, B., & Prior, R. L. (2005). The chemistry behind antioxidant capacity assays. Journal of Agricultural and Food Chemistry, 53, 1841–1856.

Beckman, J. S., Beckman, T. W., Chen, J., Marshall, P. A., & Freeman, B. A. (1990). Apparent hydroxyl radical production by peroxynitrite: Implications for endothelial injury from nitric oxide and superoxide. Proceedings of the National Academy of Sciences of the United States of America, 87, 1620–1624.

Gilbert, D. L., & Colton, C. A. (Eds.). (1999). Reactive oxygen species in biological systems. New York: Plenum Publishers.

Adler, V., Yin, Z., Tew, K. D., & Ronai, Z. (1999). Role of redox potential and reactive oxygen species in stress signaling. Oncogene, 18, 6104–6111.

Forman, H. J., & Torres, M. (2002). Reactive oxygen species and cell signaling. American Journal of Respiratory and Critical Care Medicine, 166, 54–58.

Bredt, D. S., & Snyder, S. H. (1994). Nitric oxide: A physiologic messenger molecule. Annual Review of Biochemistry, 63, 175–195.

Suzuki, Y. J., Forman, H. J., & Sevanian, A. (1997). Oxidants as stimulators of signal transduction. Free Radical Biology and Medicine, 22, 269–285.

Rhee, S. G. (1999). Redox signaling: Hydrogen peroxide as intracellular messenger. Experimental and Molecular Medicine, 31, 53–59.

Droge, W. (2002). Free radicals in the physiological control of cell function. Physiological Reviews, 82, 47–95.

Koppenol, W. H., Moreno, J. J., Pryor, W. A., Ischiropoulos, H., & Beckman, J. S. (1992). Peroxynitrite, a cloaked oxidant formed by nitric oxide and superoxide. Chemical Research in Toxicology, 5, 834–842.

Squadrito, G. L., & Pryor, W. A. (1995). The formation of peroxynitrite in vivo from nitric oxide and superoxide. Chemico-Biological Interactions, 96, 203–206.

Henle, E. S., & Linn, S. (1997). Formation, prevention, and repair of DNA damage by iron/hydrogen peroxide. The Journal of Biological Chemistry, 272, 19095–19098.

Imlay, J. A., & Linn, S. (1988). DNA damage and oxygen radical toxicity. Science, 240, 1302–1309.

Henle, E. S., Han, Z., Tang, N., Rai, P., Luo, Y., & Linn, S. (1999). Sequence-specific DNA cleavage by Fe2+-mediated Fenton reaction has possible biological implications. The Journal of Biological Chemistry, 274, 962–971.

Battin, E. E., Perron, N. R., & Brumaghim, J. L. (2006). The central role of metal coordination in selenium antioxidant activity. Inorganic Chemistry, 45, 499–501.

Flint, D. H., Tuminello, J. F., & Emptage, M. H. (1993). The inactivation of Fe–S cluster containing hydro-lyases by superoxide. The Journal of Biological Chemistry, 268, 22369–22376.

Keyer, K., & Imlay, J. A. (1996). Superoxide accelerates DNA damage by elevating free-iron levels. Proceedings of the National Academy of Sciences of the United States of America, 93, 13635–13640.

Benov, L. (2001). How superoxide radical damages the cell. Protoplasma, 217, 33–36.

Haber, F., & Weiss, J. (1932). Über die katalyse des hydroperoxydes. Naturwiss, 51, 948–950.

Koppenol, W. H. (2001). The Haber–Weiss cycle—70 years later. Redox Report, 6, 229–234.

George, P. (1947). Some experiments on the reactions of potassium superoxide in aqueous solutions. Discussions of the Faraday Society, 2, 196–205.

Nakagawa, O., Ono, S., Tsujimoto, A., Li, Z., & Sasaki, S. (2007). Selective fluorescence detection of 8-oxoguanosine with 8-oxoG-CLAMP. Nucleosides, Nucleotides, and Nucleic Acids, 26, 645–649.

Weimann, A., Belling, D., & Poulsen, H. E. (2002). Quantification of 8-oxo-guanine and guanine as the nucleobase, nucleoside and deoxynucleoside forms in human urine by high-performance liquid chromatography-electrospray tandem mass spectrometry. Nucleic Acids Research, 30, e7/1–e7/8.

Shigenaga, M. K., Aboujaoude, E. N., Chen, Q., & Ames, B. N. (1994). Assays of oxidative DNA damage biomarkers 8-oxo-2′-deoxyguanosine and 8-oxoguanine in nuclear DNA and biological fluids by high-performance liquid chromatography with electrochemical detection. Methods in Enzymology, 234, 16–33.

Shigenaga, M. K., Gimeno, C. J., & Ames, B. N. (1989). Urinary 8-hydroxy-2′-deoxyguanosine as a biological marker of in vivo oxidative DNA damage. Proceedings of the National Academy of Sciences of the United States of America, 86, 9697–9701.

Zheng, L.-F., Dai, F., Zhou, B., Yang, L., & Liu, Z.-L. (2008). Prooxidant activity of hydroxycinnamic acids on DNA damage in the presence of Cu(II) ions: Mechanism and structure-activity relationship. Food and Chemical Toxicology, 46, 149–156.

Ohshima, H., Gilibert, I., & Bianchini, F. (1999). Induction of DNA strand breakage and base oxidation by nitroxyl anion through hydroxyl radical production. Free Radical Biology and Medicine, 26, 1305–1313.

Fisher, G. R., & Gutierrez, P. L. (1991). Free radical formation and DNA strand breakage during metabolism of diaziquone by NAD(P)H quinone-acceptor oxidoreductase (DT-diaphorase) and NADPH cytochrome c reductase. Free Radical Biology and Medicine, 11, 597–607.

Kashige, N., Yamaguchi, T., Ohtakara, A., Mitsutomi, M., Brimacombe, J. S., Miake, F., et al. (1994). Structure-activity relationships in the induction of single-strand breakage in plasmid pBR322 DNA by amino sugars and derivatives. Carbohydrate Research, 257, 285–291.

Bhat, R., & Hadi, S. M. (1994). DNA breakage by tannic acid and Cu(II): Sequence specificity of the reaction and involvement of active oxygen species. Mutation Research, 313, 39–48.

Rai, P., Cole, T. D., Wemmer, D. E., & Linn, S. (2001). Localization of Fe2+ at an RTGR sequence within a DNA duplex explains preferential cleavage by Fe2+ and hydrogen peroxide. Journal of Molecular Biology, 312, 1089–1101.

Gao, Y. G., Sriram, M., & Wang, A. H. (1993). Crystallographic studies of metal ion–DNA interactions: Different binding modes of cobalt(II), copper(II) and barium(II) to N7 of guanines in Z-DNA and a drug–DNA complex. Nucleic Acids Research, 21, 4093–4101.

Rai, P., Wemmer, D. E., & Linn, S. (2005). Preferential binding and structural distortion by Fe2+ at RGGG-containing DNA sequences correlates with enhanced oxidative cleavage at such sequences. Nucleic Acids Research, 33, 497–510.

Lu, A.-L., Li, X., Gu, Y., Wright, P. M., & Chang, D.-Y. (2001). Repair of oxidative DNA damage. Cell Biochemistry and Biophysics, 35, 141–170.

Kennedy, L. J., Moore, K., Jr., Caulfield, J. L., Tannenbaum, S. R., & Dedon, P. C. (1997). Quantitaion of 8-oxoguanine and strand breaks produced by four oxidizing agents. Chemical Research in Toxicology, 10, 386–392.

Aruoma, O. I., Halliwell, B., Gajewski, E., & Dizdaroglu, M. (1991). Copper-ion-dependent damage to the bases in DNA in the presence of hydrogen peroxide. The Biochemical Journal, 273, 601–604.

Macomber, L., Rensing, C., & Imlay, J. A. (2007). Intracellular copper does not catalyze the formation of oxidative DNA damage in Escherichia coli. Journal of Bacteriology, 189, 1616–1626.

Mello-Filho, A. C., & Meneghini, R. (1991). Iron is the intracellular metal involved in the production of DNA damage by oxygen radicals. Mutation Research, 251, 109–113.

Hoffmann, M. E., Mello-Filho, A. C., & Meneghini, R. (1984). Correlation between cytotoxic effect of hydrogen peroxide and the yield of DNA strand breaks in cells of different species. Biochimica et Biophysica Acta, 781, 234–238.

Andrews, N. C. (2004). Probing the iron pool. Focus on “detection of intracellular iron by its regulatory effect”. American Journal of Physiology. Cell Physiology, 287, C1537–C1538.

Yamamoto, Y., Fukui, K., Koujin, N., Ohya, H., Kimura, K., & Kamio, Y. (2004). Regulation of the intracellular free iron pool by Dpr provides oxygen tolerance to Streptococcus mutans. Journal of Bacteriology, 186, 5997–6002.

Woodmansee, A. N., & Imlay, J. A. (2002). Quantitation of intracellular free iron by electron paramagnetic resonance spectroscopy. Methods in Enzymology, 349, 3–9.

Jacobs, A. (1977). Low molecular weight intracellular iron transport compounds. Blood, 50, 433–439.

Miller, J. P. G., & Perkins, D. J. (1969). Model experiments for the study of iron transfer from transferrin to ferritin. European Journal of Biochemistry, 10, 146–151.

Touati, D., Jacques, M., Tardat, B., Bouchard, L., & Despied, S. (1995). Lethal oxidative damage and mutagenesis are generated by iron in Δfur mutants of Escherichia coli: Protective role of superoxide dismutase. Journal of Bacteriology, 177, 2305–2314.

Biemond, P., Swaak, A. J. G., van Eijk, H. G., & Koster, J. F. (1988). Superoxide dependent iron release from ferritin in inflammatory diseases. Free Radical Biology and Medicine, 4, 185–198.

Ke, Y., & Qian, Z. M. (2003). Iron misregulation in the brain: a primary cause of neurodegenerative disorders. Lancet Neurology, 2, 246–253.

Selima, M. H., & Ratan, R. R. (2004). The role of iron neurotoxicity in ischemic stroke. Ageing Research Reviews, 3, 345–353.

Wood, R. J. (2004). The iron–heart disease connection: Is it dead or just hiding? Ageing Research Reviews, 3, 355–367.

Brewer, G. J. (2007). Iron and copper toxicity in diseases of aging, particularly atherosclerosis and Alzheimer’s disease. Experimental Biology and Medicine, 232, 323–335.

Valko, M., Rhodes, C. J., Moncol, J., Izakovic, M., & Mazur, M. (2006). Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chemico-Biological Interactions, 160, 1–40.

Luxford, C., Dean, R. T., & Davies, M. J. (2000). Radicals derived from histone hydroperoxides damage nucleobases in RNA and DNA. Chemical Research in Toxicology, 13, 665–672.

Liang, Q., & Dedon, P. C. (2001). Cu(II)/H2O2-induced DNA damage is enhanced by packaging of DNA as a nucleosome. Chemical Research in Toxicology, 14, 416–422.

Midorikawa, K., Murata, M., & Kawanishi, S. (2005). Histone peptide AKRHRK enhances H2O2-induced DNA damage and alters its site specificity. Biochemical and Biophysical Research Communications, 333, 1073–1077.

Turro, N. J. (2002). Damage control of DNA in nucleosome core particles: When a histone’s loving embrace is just not good enough. Chemistry and Biology, 9, 399–401.

Weissman, L., de Souza-Pinto, N. C., Stevnsner, T., & Bohr, V. A. (2007). DNA repair, mitochondria, and neurodegeneration. Neuroscience, 145, 1318–1329.

Berneburg, M., Kamenisch, M., Krutmann, J., & Roecken, M. (2006). ‘To repair or not to repair—No longer a question’: Repair of mitochondrial DNA shielding against age and cancer. Experimental Dermatology, 15, 1005–1015.

Birch-Machin, M. A. (2005). Using mitochondrial DNA as a biosensor of early cancer development. British Journal of Cancer, 93, 271–272.

Chatterjee, A., Mambo, E., Zhang, Y., DeWeese, T., & Sidransky, D. (2006). Targeting of mutant hogg1 in mammalian mitochondria and nucleus: effect on cellular survival upon oxidative stress. BMC Cancer, 6, 235.

de Grey, A. D. N. J. (1997). A proposed refinement of the mitochondrial free radical theory of aging. BioEssays, 19, 161–166.

Hider, R. C., Liu, Z. D., & Khodr, H. H. (2001). Metal chelation of polyphenols. Methods in Enzymology, 335, 190–203.

Pearson, R. G. (1963). Hard and soft acids and bases. Journal of the American Chemical Society, 85, 3533–3539.

Loomis, L. D., & Raymond, K. N. (1991). Solution equilibria of enterobactin and metal–enterobactin complexes. Inorganic Chemistry, 30, 906–911.

Avdeef, A., Sofen, S. R., Bregante, T. L., & Raymond, K. N. (1978). Coordination chemistry of microbial iron transport compounds. 9. Stability constants for catechol models of enterobactin. Journal of the American Chemical Society, 100, 5362–5370.

Martell, A. E., & Smith, R. M. (1977). Critical stability constants (Vol. 3, pp. 200–201). New York: Plenum Press.

Kipton, H., Powell, J., & Taylor, M. C. (1982). Interactions of iron(II) and iron(III) with gallic acid and its homologues: A potentiometric and spectrophotometric study. Australian Journal of Chemistry, 35, 739–756.

Erdogan, G., Karadag, R., & Dolen, E. (2005). Potentiometric and spectrophotometric determination of the stability constants of quercetin (3, 3′4′, 5, 7-pentahydroxyflavone) complexes with aluminium(III) and iron(II). Reviews in Analytical Chemistry, 24, 247–261.

Buffle, J., & Martell, A. E. (1977). Metal ion catalyzed oxidation of o-dihydroxy aromatic compounds by oxygen. 2. Complexes of 1, 2-dihydroxynaphthalene-4-sulfonate with iron(III) and iron(II). Inorganic Chemistry, 16, 2225–2229.

Binbuga, N., Chambers, K., Henry, W. P., & Schultz, T. P. (2005). Metal chelation studies relevant to wood preservation. 1. Complexation of propyl gallate with Fe2+. Holzforschung, 59, 205–209.

Chvátalová, K., Slaninová, I., Brezinová, L., & Slanina, J. (2008). Influence of dietary phenolic acids on redox status of iron: Ferrous iron autoxidation and ferric iron reduction. Food Chemistry, 106, 650–660.

Yoshino, M., & Murakami, K. (1998). Interaction of iron with polyphenolic compounds: Application to antioxidant characterization. Analytical Biochemistry, 257, 40–44.

Kawabata, T., Schepkin, V., Haramaki, N., Phadke, R. S., & Packer, L. (1996). Iron coordination by catechol derivative antioxidants. Biochemical Pharmacology, 51, 1569–1577.

Ohashi, Y., Yoshinaga, K., Yoshioka, H., & Yoshioka, H. (2002). Kinetic analysis of the effect of (−)-epigallocatechin gallate on the DNA strand scission induced by Fe(II). Bioscience, Biotechnology, and Biochemistry, 66, 770–776.

Hajji, H. E., Nkhili, E., Tomao, V., & Dangles, O. (2006). Interactions of quercetin with iron and copper ions: Complexation and autoxidation. Free Radical Research, 40, 303–320.

Cooper, S. R., McArdle, J. V., & Raymond, K. N. (1978). Siderophore electrochemistry: Relation to intracellular iron release mechanism. Proceedings of the National Academy of Sciences of the United States of America, 75, 3551–3554.

McBryde, W. A. E. (1964). A spectrophotometric reexamination of the spectra and stabilities of the iron (III)—Tiron complexes. Canadian Journal of Chemistry, 42, 1917–1927.

Perron, N. R., DeGuire, S. M., & Brumaghim, J. L. (2008). Kinetics of iron oxidation upon polyphenol binding (in preparation).

Stumm, W., & Lee, G. F. (1961). Oxygenation of ferrous iron. Industrial and Engineering Chemistry, 53, 143–146.

King, J., & Davidson, N. (1958). Kinetics of the ferrous iron-oxygen reaction in acidic phosphate–pyrophosphate solutions. Journal of the American Chemical Society, 80, 1542–1545.

Posner, A. M. (1953). The kinetics of autoxidation of ferrous ions in concentrated HCl solutions. Transactions of Faraday Society, 49, 382–388.

Huffman, R. E., & Davidson, N. (1956). Kinetics of the ferrous iron-oxygen reaction in sulfuric acid solution. Journal of the American Chemical Society, 78, 4836–4842.

George, P. (1954). The oxidation of ferrous perchlorate by molecular oxygen. Journal of the Chemical Society, 4349–4359.

Ryan, P., & Hynes, M. J. (2007). The kinetics and mechanisms of the complex formation and antioxidant behaviour of the polyphenols EGCg and ECG with iron(III). Journal of Inorganic Biochemistry, 101, 585–593.

Jameson, G. N. L., & Linert, W. (2001). The oxidation of 6-hydroxydopamine in aqueous solution. Part 3. Kinetics and mechanism of the oxidation with iron(III). Journal of the Chemical Society. Perkin Transactions, 2, 569–575.

Hynes, M. J., & Coinceanainn, M. O. (2001). The kinetics and mechanisms of the reaction of iron(III) with gallic acid, gallic acid methyl ester and catechin. Journal of Inorganic Biochemistry, 85, 131–142.

Ryan, P., & Hynes, M. J. (2008). The kinetics and mechanisms of the reactions of iron(III) with quercetin and morin. Journal of Inorganic Biochemistry, 102, 127–136.

El-Ayaan, U., Herlinger, E., Jameson, R. F., & Linert, W. (1997). Anaerobic oxidation of dopamine by iron(III). Journal of the Chemical Society, Dalton Transactions, 2813–2818.

Basolo, F., & Pearson, R. G. (1967). Mechanism of inorganic reactions, a study of metal complexes in solution (2nd ed.). New York: Wiley.

Hider, R. C., Mohr-Nor, A. R., Silver, J., Morrison, I. E. G., & Rees, L. V. C. (1981). Model compounds for microbial iron-transport compounds. Part 1. Solution chemistry and Mössbauer study of iron(II) and iron(III) complexes from phenolic and catecholic systems. Journal of the Chemical Society, Dalton Transactions, 609–622.

Hider, R. C., Howlin, B., Miller, J. R., Mohr-Nor, A. R., & Silver, J. (1983). Model compounds for microbial iron-transport compounds. Part IV. Further solution chemistry and Mössbauer studies on iron(II) and iron(III) catechol complexes. Inorganica Chimica Acta, 80, 51–56.

Pulido, R., Bravo, L., & Saura-Calixto, F. (2000). Antioxidant activity of dietary polyphenols as determined by a modified ferric reducing/antioxidant power assay. Journal of Agricultural and Food Chemistry, 48, 3396–3402.

Zhang, L., Bandy, B., & Davison, A. J. (1996). Effects of metals, ligands and antioxidants on the reaction of oxygen with 1, 2, 4-benzenetriol. Free Radical Biology and Medicine, 20, 495–505.

Puppo, A. (1992). Effect of flavonoids on hydroxyl radical formation by Fenton-type reactions; influence of the iron chelator. Phytochemistry, 31, 85–88.

Laughton, M. J., Halliwell, B., Evans, P. J., & Hoult, J. R. S. (1989). Antioxidant and pro-oxidant actions of the plant phenolics quercetin, gossypol and myricetin. Effects on lipid peroxidation, hydroxyl radical generation and bleomycin-dependent damage to DNA. Biochemical Pharmacology, 38, 2859–2865.

Schweigert, N., Zehnder, A. J. B., & Eggen, R. I. L. (2001). Chemical properties of catechols and their molecular modes of toxic action in cells, from microorganisms to mammals. Environmental Microbiology, 3, 81–91.

Yamahara, R., Ogo, S., Masuda, H., & Watanabe, Y. (2002). (Catecholato)iron(III) complexes: Structural and functional models for the catechol-bound iron(III) form of catechol dioxygenases. Journal of Inorganic Biochemistry, 88, 284–294.

Wunderlich, C. H., Weber, R., & Bergerhoff, G. (1991). On iron gallic ink. Zeitschrift für Anorganische Und Allgemeine Chemie, 598(599), 371–376.

Feller, R. K., & Cheetham, A. K. (2006). Fe(III), Mn(II), Co(II), and Ni(II) 3, 4, 5-trihydroxybenzoate (gallate) dihydrates; a new family of hybrid framework materials. Solid State Sciences, 8, 1121–1125.

Higuchi, M., Hitomi, Y., Minami, H., Tanaka, T., & Funabiki, T. (2005). Correlation of spin states and spin delocalization with the dioxygen reactivity of catecholatoiron (III) complexes. Inorganic Chemistry, 44, 8810–8821.

Floquet, S., Simaan, A. J., Rivière, E., Nierlich, M., Thuéry, P., Ensling, J., Gütlich, P., Girerd, J.-J., Boillot, M.-L. (2005). Spin crossover of ferric complexes with catecholate derivatives. Single-crystal X-ray structure, magnetic and Mössbauer investigations. Dalton Transactions, 1734–1742.

Chiou, Y.-M., & Que, L. (1995). Structure of a mononuclear iron(II)-catecholate complex and its relevance to the extradiol-cleaving catechol dioxygenases. Inorganic Chemistry, 34, 3577–3578.

Velusamy, M., Mayilmurugan, R., & Palaniadavar, M. (2004). Iron(III) complexes of sterically hindered tetradentate monophenolate ligands as functional models for catechol 1, 2-dioxygenases: The role of ligands stereoelectronic properties. Inorganic Chemistry, 43, 6284–6293.

Jo, D.-H., Chiou, Y.-M., & Que, J. L. (2001). Models of extradiol cleaving catechol dioxygenases: Syntheses, structures, and reactivities of iron(II)-monoanionic catecholate complexes. Inorganic Chemistry, 40, 3181–3190.

Grillo, V. A., Hanson, G. R., Wang, D., Hambley, T. W., Gahan, L. R., Murray, K. S., et al. (1996). Synthesis, X-ray structural determination, and magnetic susceptibility, Mössbauer, and EPR studies of (Ph4P)2[Fe2(Cat)4(H2O)2]·6H2O, a catecholato-bridged dimer of iron(III). Inorganic Chemistry, 35, 3568–3576.

Caulder, D. L., Powers, R. E., Parac, T. N., & Raymond, K. N. (1998). The self-assembly of a predesigned tetrahedral M4L6 supramolecular cluster. Angewandte Chemie (International ed. in English), 37, 1840–1843.

Jewett, S. L., Eggling, S., & Geller, L. (1997). Novel method to examine the formation of unstable 2:1 and 3:1 complexes of catecholamines and iron(III). Journal of Inorganic Biochemistry, 66, 165–173.

Jovanovic, S. V., Simic, M. G., Steenken, S., & Hara, Y. (1998). Iron complexes of gallocatechins. Antioxidant action or iron regulation? Journal of the Chemical Society. Perkin Transactions, 2, 2365–2369.

Ackermann, V. G., & Hesse, D. (1970). Über eisen(III)-komplexe mit phenolen. III. Zeitschrift für Anorganische Und Allgemeine Chemie, 375, 77–86.

Maqsood, Z. A. T., & Kazmi, S. A. (1993). Formation of iron gallic acid complexes at different pH and determination of their stability constants. Pakistan Journal of Scientific and Industrial Research, 6, 511–516.

Perron, N. R., Hodges, J. N., Jenkins, M., & Brumaghim, J. L. (2008). Predicting how polyphenol antioxidants prevent DNA damage by binding to iron. Inorganic Chemistry, 47, 6153–6161.

Lopes, G. K. B., Schulman, H. M., & Hermes-Lima, M. (1999). Polyphenol tannic acid inhibits hydroxyl radical formation from Fenton reaction by complexing ferrous ions. Biochimica et Biophysica Acta, 1472, 142–152.

Mentasti, E., Pelizzetti, E., & Saini, G. (1976). Interactions of Fe(III) with adrenaline, L-Dopa, and other catechol derivatives. Journal of Inorganic and Nuclear Chemistry, 38, 785–788.

Mentasti, E., & Pelizzetti, E. (1973). Reactions between iron(III) and catechol (o-dihydroxybenzene). Part I. Equilibria and kinetics of complex formation in aqueous acid solution. Journal of the Chemical Society. Dalton Transactions, 2605–2608.

Kennedy, J. A., & Powell, H. K. J. (1985). Aluminium(III) and iron(III) 1, 2-diphenolato complexes: A potentiometric study. Australian Journal of Chemistry, 38, 659–667.

de Souza, R. F. V., Sussuchi, E. M., & De Giovani, W. F. (2003). Synthesis, electrochemical, spectral, and antioxidant properties of complexes of flavonoids with metal ions. Synthesis and Reactivity in Inorganic and Metal-Organic Chem, 33, 1125–1144.

Escandar, G. M., & Sala, L. F. (1991). Complexing behavior of rutin and quercetin. Canadian Journal of Chemistry, 69, 1994–2001.

van Acker, S. A. B. E., van Balen, G. P., van den Berg, D.-J., Bast, A., & van der Vijgh, W. J. F. (1998). Influence of iron chelation on the antioxidant activity of flavonoids. Biochemical Pharmacology, 56, 935–943.

Sugihara, N., Arakawa, T., Ohnishi, M., & Furuno, K. (1999). Anti- and pro-oxidative effects of flavonoids on metal-induced lipid hydroperoxide-dependent lipid peroxidation in cultured hepatocytes loaded with α-linolenic acid. Free Radical Biology and Medicine, 27, 1313–1323.

Sugihara, N., Ohnishi, M., Imamura, M., & Furuno, K. (2001). Differences in antioxidative efficiency of catechins in various metal-induced lipid peroxidations in cultured hepatocytes. Journal of Health Science, 47, 99–106.

Morel, I., Lescoat, G., Cogrel, P., Sergent, O., Pasdeloup, N., Brissot, P., et al. (1993). Antioxidant and iron-chelating activities of the flavonoids catechin, quercetin and diosmetin on iron-loaded rat hepatocyte cultures. Biochemical Pharmacology, 45, 13–19.

Morel, I., Lescoat, G., Cillard, P., & Cillard, J. (1994). Role of flavonoids and iron chelation in antioxidant action. Methods in Enzymology, 234, 437–443.

Ferrali, M., Signorini, C., Caciotti, B., Sugherini, L., Ciccoli, L., Giachetti, D., et al. (1997). Protection against oxidative damage of erythrocyte membrane by the flavonoid quercetin and its relation to iron chelating activity. FEBS Letters, 416, 123–129.

Anghileri, L. J., & Thouvenot, P. (2000). Natural polyphenols–iron interaction. Biological Trace Element Research, 73, 251–258.

Sestili, P., Guidarelli, A., Dacha, M., & Cantoni, O. (1998). Quercetin prevents DNA single strand breakage and cytotoxicity caused by tert-butylhydroperoxide: Free radical scavenging versus iron chelating mechanism. Free Radical Biology and Medicine, 25, 196–200.

Sestili, P., Diamantini, G., Bedini, A., Cerioni, L., Tommasini, I., Tarzia, G., et al. (2002). Plant-derived phenolic compounds prevent the DNA single-strand breakage and cytotoxicity by tert-butylhydroperoxide via an iron-chelating mechanism. The Biochemical Journal, 364, 121–128.

Melidou, M., Riganakos, K., & Galaris, D. (2005). Protection against nuclear DNA damage offered by flavonoids in cells exposed to hydrogen peroxide: The role of iron chelation. Free Radical Biology and Medicine, 39, 1591–1600.

Boato, F., Wortley, G. M., Liu, R. H., & Glahn, R. P. (2002). Red grape juice inhibits iron availability: Application of an in vitro digestion/Caco-2 cell model. Journal of Agricultural and Food Chemistry, 50, 6935–6938.

Matuschek, E., & Svanberg, U. (2002). Oxidation of polyphenols and the effect on in vitro iron accessibility in a model food system. Journal of Food Science, 67, 420–424.

Matuschek, E., Towo, E., & Svanberg, U. (2001). Oxidation of polyphenols in phytate-reduced high-tannin cereals: Effect on different phenolic groups and on in vitro accessible iron. Journal of Agricultural and Food Chemistry, 49, 5630–5638.

Gaffney, S., Williams, V., Flynn, P., Carlino, R., Mowry, C., Dierenfeld, E., et al. (2004). Tannin/polyphenol effects on iron solubilization in vitro. Bios, 75, 43–52.

Brown, R., Klein, A., & Hurrell, R. F. (1989). Effect of polyphenols on iron bioavailability in rats. Special Publication (Royal Society of Chemistry), 72, 152–154.

Das, P., Raghuramulu, N., & Rao, K. C. (2003). Effect of organic acids and polyphenols on in vitro available iron from foods. Journal of Food Science and Technology, 40, 677–681.

Tuntawiroon, M., Sritongkul, N., Brune, M., Rossander-Hulten, L., Pleehachinda, R., Suwanik, R., et al. (1991). Dose-dependent inhibitory effect of phenolic compounds in foods on nonheme-iron absorption in men. The American Journal of Clinical Nutrition, 53, 554–557.

Manach, C., Williamson, G., Morand, C., Scalbert, A., & Remesy, C. (2005). Bioavailability and bioefficacy of polyphenols in humans. I. Review of 97 bioavailability studies. The American Journal of Clinical Nutrition, 81, 230S–242S.

Williamson, G., & Manach, C. (2005). Bioavailability and bioefficacy of polyphenols in humans. II. Review of 93 intervention studies. The American Journal of Clinical Nutrition, 81, 243S–255S.

Kuo, S.-M., Leavitt, P. S., & Lin, C.-P. (1998). Dietary flavonoids interact with trace metals and affect metallothionein level in human intestinal cells. Biological Trace Element Research, 62, 135–153.

Davis, S. R., & Cousins, R. J. (2000). Metallothionein expression in animals: A physiological perspective on function. The Journal of Nutrition, 130, 1085–1088.

Riggio, M., Filosa, S., Parisi, E., & Scudiero, R. (2003). Changes in zinc, copper and metallothionein contents during oocyte growth and early development of the teleost Danio rerio (zebrafish). Comparitive Biochemistry and Physiology C. Comparitive Pharmacology and Toxicology, 135, 191–196.

Eiichi, T., Shin-Ichi, O., Kumiko, I., Akira, N., Yoshihisa, I., & Takashi, S. (2007). Metallothionein proteins expression, copper and zinc concentrations, and lipid peroxidation level in a rodent model for amyotrophic lateral sclerosis. Toxicology, 229, 33–41.

Rachmilewitz, E. A., Lubin, B. H., & Shohet, S. B. (1976). Lipid membrane peroxidation in β-thalassemia major. Blood, 47, 495–505.

Hebbel, R. P., Eaton, J. W., Balasingam, M., & Steinber, M. H. (1982). Spontaneous oxygen radical generation by sickle erythrocytes. The Journal of Clinical Investigation, 70, 1253–1259.

Scott, M. D., van den Berg, J. J. M., Repka, T., Rouyer-Fessard, P., Hebbel, R. P., Beuzard, Y., et al. (1993). Effect of excess α-hemoglobin chains on cellular and membrane oxidation in model β-thalassemic erythrocytes. The Journal of Clinical Investigation, 91, 1706–1712.

Vives Corrons, J. L., Pujades, M. A., Miguel-Garcia, A., Miguael-Sosa, A., Cambiazzo, S., Dibarrart, M. T., et al. (1995). Increased susceptibility of microcytic red blood cells to in vitro oxidative stress. European Journal of Haematology, 55, 327–331.

Grinberg, L. N., Newmark, H., Kitrossky, N., Rahamim, E., Chevion, M., & Rachmilewitz, E. A. (1997). Protective effects of tea polyphenols against oxidative damage to red blood cells. Biochemical Pharmacology, 54, 973–978.

Srichairatanakool, S., Ounjaijean, S., Thephinlap, C., Khansuwan, U., Phisalpong, C., & Fucharoen, S. (2006). Iron-chelating and free-radical scavenging activities of microwave processed green tea in iron overload. Hemoglobin, 30, 311–327.

Thephinlap, C., Ounjaijean, S., Khansuwan, U., Fucharoen, S., Porter, J. B., & Srichairatanakool, S. (2007). Epigallocatechin-3-gallate and epicatechin-3-gallate from green tea decrease plasma non-transferrin bound iron and erythrocyte oxidative stress. Medicinal Chemistry, 3, 289–296.

Sofic, E., Paulus, W., Jellinger, K., Riederer, P., & Youdim, M. B. H. (1991). Selective increase of iron in substantia nigra zona compacta of Parkinsonian brains. Journal of Neurochemistry, 56, 978–982.

Atwood, C. S., Obrenovich, M. E., Liu, T., Chan, H., Perry, G., Smith, M. A., et al. (2003). Amyloid-β: A chameleon walking in two worlds: A review of the trophic and toxic properties of amyloid-β. Brain Research Reviews, 43, 1–16.

Turnbull, S., Tabner, B. J., El-Agnaf, O. M. A., Moore, S., Davies, Y., & Allsop, D. (2001). α-Synuclein implicated in Parkinson’s disease catalyses the formation of hydrogen peroxide in vitro. Free Radical Biology and Medicine, 30, 1163–1170.

Ostrerova-Golts, N., Petrucelli, L., Hardy, J., Lee, J. M., Farer, M., & Wolozin, B. (2000). The A53T α-synuclein mutation increases iron-dependent aggregation and toxicity. The Journal of Neuroscience, 20, 6048–6054.

Singh, M., Arseneault, M., Sanderson, T., Murthy, V., & Ramassamy, C. (2008). Challenges for research on polyphenols from foods in Alzheimer’s disease: Bioavailability, metabolism, and cellular and molecular mechanisms. Journal of Agricultural and Food Chemistry, 56, 4855–4873.

Pan, T., Jankovic, J., & Le, W. (2003). Potential therapeutic properties of green tea polyphenols in Parkinson’s disease. Drugs and Aging, 20, 711–721.

Mandel, S. A., Avramovich-Tiorsh, Y., Reznichenko, L., Zheng, H., Weinreb, O., Amit, T., et al. (2005). Multifunctional activities of green tea catechins in neuroprotection. Neurosignals, 14, 46–60.

Bush, A. I. (2003). The metallobiology of Alzheimer’s disease. Trends in Neurosciences, 26, 207–214.

Mandel, S. A., Amit, T., Reznichenko, L., Weinreb, O., & Youdim, M. B. H. (2006). Green tea catechins as brain-permeable, natural iron chelators-antioxidants for the treatment of neurodegenerative disorders. Molecular Nutrition and Food Research, 50, 229–234.

Guo, Q., Zhao, B., Li, M., Shen, S., & Xin, W. (1996). Studies on protective mechanisms of four components of green tea polyphenols against lipid peroxidation in synaptosomes. Biochimica et Biophysica Acta, 1304, 210–222.

Ono, K., Yoshiike, Y., Takashima, A., Hasegawa, K., Naiki, H., & Yamada, M. (2003). Potent anti-amyloidogenic and fibril-destabilizing effects of polyphenols in vitro: implications for the prevention and therapeutics of Alzheimer’s disease. Journal of Neurochemistry, 87, 172–181.

Levites, Y., Amit, T., Mandel, S., & Youdim, M. B. H. (2003). Neuroprotection and neurorescue against Aβ toxicity and PKC-dependent release of nonamyloidogenic soluble precursor protein by green tea polyphenol (−)-epigallocatechin-3-gallate. FASEB Journal, 17, 952–954.

Baum, L., & Ng, A. (2004). Curcumin interaction with copper and iron suggests one possible mechanism of action in Alzheimer’s disease animal models. Journal of Alzheimer’s Disease, 6, 367–377.

Lim, G. P., Chu, T., Yang, F., Beech, W., Frautschy, S. A., & Cole, G. M. (2001). The curry spice curcumin reduces oxidative damage and amyloid pathology in an Alzheimer transgenic mouse. The Journal of Neuroscience, 21, 8370–8377.

Ohkawa, H., Ohishi, N., & Yagi, K. (1979). Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Analytical Biochemistry, 95, 351–358.

Oboh, G., & Rocha, J. B. T. (2007). Distribution and antioxidant activity of polyphenols in ripe and unripe tree pepper (Capsicum pubescens). Journal of Food Biochemistry, 31, 456–473.

Hermes-Lima, M., Wang, E. M., Schulman, H. M., Storrey, K. B., & Ponka, P. (1994). Deoxyribose degradation catalyzed by Fe(III)EDTA: Kinetic aspects and potential usefulness for submicromolar iron measurements. Molecular and Cellular Biochemistry, 137, 65–73.

Winterbourn, C. C. (1987). The ability of scavengers to distinguish •OH production in the iron-catalyzed Haber–Weiss reaction: Comparison of four assays for •OH. Free Radical Biology and Medicine, 3, 33–39.

Romanová, D., Vachálková, A., Cipák, L., Ovesná, Z., & Rauko, P. (2001). Study of antioxidant effect of apigenin, luteolin, and quercetin by DNA protective method. Neoplasma, 48, 104–107.

Moran, J. F., Klucas, R. V., Grayer, R. J., Abian, J., & Becana, M. (1997). Complexes of iron with phenolic compounds from soybean nodules and other legume tissues: Prooxidant and antioxidant properties. Free Radical Biology and Medicine, 22, 861–870.

Zhao, C., Dodin, G., Yuan, C., Chen, H., Zheng, R., Jia, Z., et al. (2005). “In vitro” protection of DNA from Fenton reaction by plant polyphenol verbascoside. Biochimica et Biophysica Acta, 1723, 114–123.

Web site: www.clinicaltrials.gov/ct/show/NCT00166335?order=00166331 “Green tea extract in treating patients with stage 00166330, stage I, or stage II chronic lymphocytic leukemia”. Accessed June 00166326, 00162008.

Cheng, I. F., & Breen, K. (2000). On the ability of four flavonoids, baicilein, luteolin, naringenin, and quercetin, to suppress the Fenton reaction of the iron-ATP complex. BioMetals, 13, 77–83.

Jovanovic, S. V., Steenken, S., Hara, Y., & Simic, M. G. (1996). Reduction potentials of flavonoid and model phenoxyl radicals. Which ring in flavonoids is responsible for antioxidant activity? Journal of the Chemical Society. Perkin Transactions, 2, 2497–2504.

Arora, A., Nair, M. G., & Strasburg, G. M. (1998). Structure–activity relationships for antioxidant activities of a series of flavonoids in a liposomal system. Free Radical Biology and Medicine, 24, 1355–1363.

Khokhar, S., & Apenten, R. K. O. (2003). Iron binding characteristics of phenolic compounds: Some tentative structure–activity relations. Food Chemistry, 81, 133–140.

Perron, N. R., & Brumaghim, J. L. (2008). Method for predicting the antioxidant potency of polyphenol compounds, US patent pending.

Oviedo, C., Contreras, D., Freer, J., & Rodriguez, J. (2003). A screening method for detecting iron reducing wood-rot fungi. Biotechnology Letters, 25, 891–893.

Stadler, R. H., Richoz, J., Turesky, R. J., Welti, D. H., & Fay, L. B. (1996). Oxidation of caffeine and related methylxanthines in ascorbate and polyphenol-driven Fenton-type oxidations. Free Radical Research, 24, 225–240.

Contreras, D., Rodríguez, J., Freer, J., Schwederski, B., & Kaim, W. (2007). Enhanced hydroxyl radical production by dihydroxybenzene-driven Fenton reactions: Implications for wood biodegradation. Journal of Biological Inorganic Chemistry, 12, 1055–1061.

Paszczynski, A., Crawford, R., Funk, D., & Goodell, B. (1999). De novo synthesis of 4, 5-dimethoxycatechol and 2, 5-dimethoxyhydroquinone by the brown rot fungus Gloeophyllum trabeum. Applied and Environmental Microbiology, 65, 674–679.

Kennedy, J. A., & Powell, H. K. J. (1985). Polyphenol interactions with aluminium(III) and iron(III): Their possible involvement in the podalization process. Australian Journal of Chemistry, 38, 879–888.

Kerem, Z., Jensen, K. A., & Hammel, K. E. (1999). Biodegradative mechanism of the brown rot basidiomycete Gloeophyllum tradbeum: Evidence for an extracellular hydroquinone-driven Fenton reaction. FEBS Letters, 446, 49–54.

Wang, W., & Gao, P. J. (2003). Function and mechanism of a low-molecular-weight peptide produced by Gloeophyllum trabeum in biodegradation of cellulose. Journal of Biotechnology, 101, 119–130.

Richards, M. P., Lee, C.-H., & Reed, J. D. (2005). Methods and lipophilic antioxidant compositions to inhibit lipid oxidation in food products. US patent 2005175762.

Furukawa, J., Shibuta, T., & Takamine, K. (2003). Food additives for improving shelf life. Japan patent 2003088345.

Richards, G. N. (1999). Polyphenol-containing wood extract as antibacterial for food. US patent 19970924.

Schur, J. P. (1998). Preservative for foods and cosmetics. Germany patent 97-19726429 19970623.

Levy, M.-C., & Andry, M.-C. (1995). Microcapsules with walls made of cross-linked plant polyphenols, for foods, pharmaceuticals or cosmetics. PCT Int. Appl. patent 94-1146 19940202.

Hara, M., & Ishigami, T. (1990). Complex of tea polyphenols and protein for uses in medicine and food industries. Japan patent 02202900.

Mai, J., Chambers, L. J., & McDonald, R. E. (1985). Tea extract used for food preservation. Brit. UK Pat. Appl. patent 2151123.

Reddan, J. R., Giblin, F. J., Sevilla, M., Padgaonkar, V., Dziedzic, D. C., Leverenz, V. R., et al. (2003). Propyl gallate is a superoxide dismutase mimic and protects cultured lens epithelial cells from H2O2 insult. Experimental Eye Research, 76, 49–59.

Mellican, R. I., Li, J., Mehansho, H., & Nielsen, S. S. (2003). The role of iron and the factors affecting off-color development of polyphenols. Journal of Agricultural and Food Chemistry, 51, 2304–2316.

Martinez, M. V., & Whitaker, J. R. (1995). The biochemistry and control of enzymatic browning. Trends in Food Science and Technology, 6, 195–200.

Mayer, A. M. (2006). Polyphenol oxidases in plants and fungi: Going places? A review. Phytochemistry, 67, 2318–2331.

Singh, D. V., & Mukherjee, P. P. (1973). Tyrosinase, an iron(II)-containing enzyme from tea leaves. Current Science, 42, 391.

Hiramoto, K., Ojima, N., Sako, K., & Kikugawa, K. (1996). Effect of plant phenolics on the formation of spin-adduct of hydroxyl radical and the DNA strand breaking of hydroxyl radical. Biological and Pharmaceutical Bulletin, 19, 558–563.

Kawanishi, S., Oikawa, S., & Murata, M. (2005). Evaluation for safety of antioxidant chemopreventive agents. Antioxidants and Redox Signaling, 7, 1728–1739.

Inoue, S., Ito, K., Yamamoto, K., & Kawanishi, S. (1992). Caffeic acid causes metal-dependent damage to cellular and isolated DNA through H2O2 formation. Carcinogenesis, 13, 1497–1502.

Malaisse, W. J., Hutton, J. C., Kawazu, S., Herchuelz, A., Valverde, I., & Sener, A. (1979). The stimulus-secretion coupling of glucose-induced insulin release. Diabetologia, 16, 331–341.

Kostyuk, V. A., Potapovich, A. I., Strigunova, E. N., Kostyuk, T. V., & Afanas’ev, I. B. (2004). Experimental evidence that flavonoid metal complexes may act as mimics of superoxide dismutase. Archives of Biochemistry and Biophysics, 428, 204–208.

Afanas’ev, I. B., Ostrakhovitch, E. A., Mikhal’chik, E. V., Ibragimova, G. A., & Korkina, L. G. (2001). Enhancement of antioxidant and anti-inflammatory activities of bioflavonoid rutin by complexation with transition metals. Biochemical Pharmacology, 61, 677–684.

McCord, J. M., Keele, J. B. B., & Fridovich, I. (1971). An enzyme-based theory of obligate anaerobiosis: The physiological function of superoxide dismutase. Proceedings of the National Academy of Sciences of the United States of America, 68, 1024–1027.

Fenton, H. J. H. (1894). Oxidation of tartaric acid in presence of iron. Journal of the Chemical Society, Transactions, 65, 899–910.

Fenton, H. J. H., & Jones, H. O. (1900). The oxidation of organic acids in presence of ferrous iron. Part I. Journal of the Chemical Society, Transactions, 77, 69–76.

Deisseroth, A., & Dounce, A. L. (1970). Catalase: Physical and chemical properties, mechanism of catalysis, and physiological role. Physiological Reviews, 50, 319–369.

Rotruck, J. T., Pope, A. L., Ganther, H. E., Swanson, A. B., Hafeman, D. G., & Hoekstra, W. G. (1972). Selenium: Biochemical role as a component of glutathione peroxidase. Science, 179, 588–590.

Mugesh, G., & du Mont, W.-W. (2001). Structure-activity correlation between natural glutathione peroxidase (GPx) and mimics: A biomimetic concept for the design and synthesis of more efficient GPx mimics. Chemistry—A European Journal, 7, 1365–1370.

Gunther, M. R., Hanna, P. M., Mason, R. P., & Cohen, M. S. (1995). Hydroxyl radical formation from cuprous ion and hydrogen peroxide: A spin-trapping study. Archives of Biochemistry and Biophysics, 316, 515–522.

Kadiiska, M. B., & Mason, R. P. (2002). In vivo copper-mediated free radical production: an ESR spin-trapping study. Spectrochimica Acta. Part A: Molecular Spectroscopy, 58, 1227–1239.

Bhattacharya, P. K., & Patel, V. K. (1985). Effect of substitution on the catecholate ring on ternary complex stability. Proceedings of the Indiana Academy of Science (Chemical Science), 94, 495–500.

Blanco, C. A., & Hynes, M. J. (1992). Catalysis of the deprotonation of β-diketones during formation of the 1:1 metal complexes. Canadian Journal of Chemistry, 70, 2285–2289.

Esparza, I., Salinas, I., Santamaria, C., Garcia-Mina, J. M., & Fernandez, J. M. (2005). Electrochemical and theoretical complexation studies for Zn and Cu with individual polyphenols. Analytica Chimica Acta, 543, 267–274.

Mahal, H. S., Kapoor, S., Satpati, A. K., & Mukherjee, T. (2005). Radical scavenging and catalytic activity of metal–phenolic complexes. The Journal of Physical Chemistry B, 109, 24197–24202.

Bendini, A., Cerretani, L., Vecchi, S., Carrasco-Pancorbo, A., & Lercker, G. (2006). Protective effects of extra virgin olive oil phenolics on oxidative stability in the presence or absence of copper ions. Journal of Agricultural and Food Chemistry, 54, 4880–4887.

Andrade, R. G., Jr., Dalvi, L. T., Silva, J. J. M. C., Lopes, G. K. B., Alonso, A., & Hermes-Lima, M. (2005). The antioxidant effect of tannic acid on the in vitro copper-mediated formation of free radicals. Archives of Biochemistry and Biophysics, 437, 1–9.

Perron, N. R., Chaur, M., Echegoyen, L., & Brumaghim, J. L. (2008). Antioxidant and prooxidant effects of polyphenols on copper-mediated DNA damage (submitted).

Li, Y., & Cao, Z. (2002). The neuroprotectant ebselen inhibits oxidative DNA damage induced by dopamine in the presence of copper ions. Neuroscience Letters, 330, 69–73.

Rahman, A., Shahabuddin, Hadi, S. M., Parish, J. H., & Ainley, K. (1989). Strand scission in DNA induced by quercetin and Cu(II): Role of Cu(I) and oxygen free radicals. Carcinogenesis, 10, 1833–1839.

Elbling, L., Weiss, R.-M., Teufelhofer, O., Uhl, M., Knasmueller, S., Schulte-Hermann, R., et al. (2005). Green tea extract and (−)-epigallocatechin-3-gallate, the major tea catechin, exert oxidant but lack antioxidant activities. FASEB Journal, 19, 807–809.

Lambert, J. D., Sang, S., & Yang, C. S. (2007). Possible controversy over dietary polyphenols: Benefits vs risks. Chemical Research in Toxicology, 20, 583–585.

Rae, T. D., Schmidt, P. J., Pufahl, R. A., Culotta, V. C., & O’Halloran, T. V. (1999). Undetectable intracellular free copper: The requirement of a copper chaperone for superoxide dismutase. Science, 284, 805–808.

Masella, R., Benedetto, R. D., Vari, R., Filesi, C., & Giovannini, C. (2005). Novel mechanisms of natural antioxidant compounds in biological systems: Involvement of glutathione and glutathione-related enzymes. The Journal of Nutritional Biochemistry, 16, 577–586.

Yang, L., McRae, R., Henary, M. M., Patel, R., Lai, B., Vogt, S., et al. (2005). Imaging of the intracellular topography of copper with a fluorescent sensor and by synchrotron X-ray fluorescence microscopy. Proceedings of the National Academy of Sciences of the United States of America, 102, 11179–11184.

Que, E. L., Domaille, D. W., & Chang, C. J. (2008). Metals in neurobiology: Probing their chemistry and biology with molecular imaging. Chemical Reviews, 108, 1517–1549.

Turnlund, J. R., Jacob, R. A., Keen, C. L., Strain, J. J., Kelley, D. S., Domek, J. M., et al. (2004). Long-term high copper intake: Effects on indexes of copper status, antioxidant status, and immune function in young men. The American Journal of Clinical Nutrition, 79, 1037–1044.

Bremner, I. (1998). Manifestations of copper excess. The American Journal of Clinical Nutrition, 67, 1069S–1073S.

Koizumi, M., Fujii, J., Suzuki, K., Inoue, T., Inoue, T., Gutteridge, J. M. C., et al. (1998). A marked increase in free copper levels in the plasma and liver of LEC rats: An animal model for Wilson disease and liver cancer. Free Radical Research, 28, 441–450.

Sarkar, B. (1999). Treatment of Wilson and Menkes diseases. Chemical Reviews, 99, 2535–2544.

Heller, J., & Schwarzenbach, G. (1952). 102. Metallindikatoren V. Die eisenkomplexe der 2, 3-dioxy-naphtalin-6-sulfonsäure. Helvetica Chimica Acta, 35, 812–817.

Raymond, K. N., McMurry, T. J., & Garrett, T. M. (1988). Macrocyclic catechol-containing ligands. Pure and Applied Chemistry, 60, 545–548.

Harris, W. R., & Raymond, K. N. (1979). Ferric ion sequestering agents. 3. The spectrophotometric and potentiometric evaluation of two new enterobactin analogues: 1, 5, 9-N, N′, N′′-Tris(2, 3-dihydroxybenzoyl)-cyclotriazatridecane and 1, 3, 5-N, N′, N′′-tris(2, 3-dihydroxybenzoyl)triaminomethylbenzene. Journal of the American Chemical Society, 101, 6534–6541.

Engelmann, M. D., Hutcheson, R., & Cheng, I. F. (2005). Stability of ferric complexes with 3-hydroxyflavone (flavonol), 5, 7-dihyroxyflavone (chrysin), and 3′, 4′-dihydroxyflavone. Journal of Agricultural and Food Chemistry, 53, 2953–2960.

Elhabiri, M., Carrer, C., Marmolle, F., & Traboulsi, H. (2007). Complexation of iron(III) by catecholate-type polyphenols. Inorganica Chimica Acta, 360, 353–359.

Maqsood, Z. T., & Kazmi, S. A. (1993). Determination and comparison of stability constants, enthalpy and entropy of formation of iron(III) complexes of gallic acid and methyl ester of gallic acid. Journal of the Chemical Society of Pakistan, 15, 30–35.

Tsobuchi, A., Kanno, C., & Akiyama, M. (1997). Enterobactin model compounds (LYSCAMs): Iron transport to microorganisms and iron removal from transferrin. Journal of Inorganic Biochemistry, 67, 31.

Rodgers, S. J., Lee, C.-W., Ng, C. Y., & Raymond, K. N. (1987). Ferric ion sequestering agents. 15. Synthesis, solution chemistry, and electrochemistry of a new cationic analogue of enterobactin. Inorganic Chemistry, 26, 1622–1625.

Thomas, F., Beguin, C., Pierre, J.-L., & Serratrice, G. (1999). Thermodynamic and kinetic studies of the sulfonated derivative of the iron chelator TRENCAM, an analog of enterobactin. Inorganica Chimica Acta, 291, 148–157.

Inoue, M. B., Inoue, M., Fernando, Q., Valcic, S., & Timmermann, B. N. (2002). Potentiometric and 1H NMR studies of complexation of Al3+ with (−)-epigallocatechin gallate, a major active constituent of green tea. Journal of Inorganic Biochemistry, 88, 7–13.

Kumamoto, M., Sonda, T., Nagyama, K., & Tabata, M. (2001). Effects of pH and metal ions on antioxidative activities of catechins. Bioscience, Biotechnology, and Biochemistry, 65, 126–132.

Jovanovic, S. V., Hara, Y., Steenken, S., & Simic, M. G. (1995). Antioxidant potential of gallocatechins. A pulse radiolysis and laser photolysis study. Journal of the American Chemical Society, 117, 9881–9888.

Beltrán, J. L., Sanli, N., Fonrodona, G., Barrón, D., Özkan, G., & Barbosa, J. (2003). Spectrophotometric, potentiometric and chromatographic pK a values of polyphenolic acids in water and acetonitrile-water media. Analytica Chimica Acta, 484, 253–264.

IUPAC. (1979). IUPAC stability constants of metal–ion complexes, part B, organic ligands. Oxford, UK: Pergamon Press.

Calculated using Advanced Chemistry Development (ACD/Labs) Software V8.14 for Solaris.

Kennedy, J. A., Munro, M. H. G., Powell, H. K. J., Porter, L. J., & Foo, L. Y. (1984). The protonation reactions of catechin, epicatechin and related compounds. Australian Journal of Chemistry, 37, 885–892.

Herrero-Martínez, J. M., Sanmartin, M., Rosés, M., Bosch, E., & Ràfols, C. (2005). Determination of dissociation constants of flavonoids by capillary electrophoresis. Electrophoresis, 26, 1886–1895.

Ragnar, M., Lindgren, C. T., & Nilvebrant, N.-O. (2000). pK a-values of guaiacyl and syringyl phenols related to lignin. Journal of Wood Chemistry and Technology, 20, 277–305.

Nordström, C.-G., Lindberg, J. J., & Karumaa, L. J. (1963). Thermodynamic ionization constants of phenolic carboxylic acids related to guaiacol. Soumen Kem B, 36B, 105–109.

Ermakova, M. I., Kiryushina, M. F., & Zarubin, M. Y. (1985). OH-acidity of phenols related to lignin in dimethyl sulfoxide, dioxane and their mixtures with water. Koksnes Kimija, 6, 61–64.