A Review of Therapeutic Aptamer Conjugates with Emphasis on New Approaches
Tóm tắt
Từ khóa
Tài liệu tham khảo
Hansel, 2010, The safety and side effects of monoclonal antibodies, Nat. Rev. Drug Discov., 9, 325, 10.1038/nrd3003
Hedden, 2012, Assessing the real-world cost-effectiveness of adjuvant trastuzumab in HER-2/neu positive breast cancer, Oncologist, 17, 164, 10.1634/theoncologist.2011-0379
Jeyakumar, 2012, Trastuzumab for HER2-positive metastatic breast cancer: clinical and economic considerations, Clin. Med. Insights Oncol., 6, 179, 10.4137/CMO.S6460
Goncalves, 2009, Cost-effectiveness analysis of trastuzumab (Herceptin) in HER2-overexpressed metastatic breast cancer, Am. J. Clin. Oncol., 32, 492, 10.1097/COC.0b013e3181931277
Harding, 2010, The immunogenicity of humanized and fully human antibodies: Residual immunogenicity resides in the CDR regions, MAbs, 2, 256, 10.4161/mabs.2.3.11641
Meng, 2012, Targeted delivery of chemotherapy agents using a liver cancer-specific aptamer, PLoS One, 7, e33434, 10.1371/journal.pone.0033434
Bolhassani, 2011, Potential efficacy of cell-penetrating peptides for nucleic acid and drug delivery in cancer, Biochim. Biophys. Acta, 1816, 232
Koren, 2012, Cell-penetrating peptides: breaking through to the other side, Trends Mol. Med., 18, 385, 10.1016/j.molmed.2012.04.012
Lehto, 2012, Cell-penetrating peptides for the delivery of nucleic acids, Expert Opin. Drug Deliv., 9, 823, 10.1517/17425247.2012.689285
Bruno, 2009, Preliminary development of DNA aptamer-Fc conjugate opsonins, J. Biomed. Mat. Res. A, 90, 1152, 10.1002/jbm.a.32182
Bruno, 2008, In vitro antibacterial effects of anti-lipopolysaccharide DNA aptamer-C1qrs complexes, Folia Microbiol., 53, 295, 10.1007/s12223-008-0046-6
Bruno, 2010, Aptamer-biotin-streptavidin-C1q complexes can trigger the classical complement pathway to kill cancer cells, In Vitro Cell. Dev. Biol., 46, 107, 10.1007/s11626-009-9257-7
Bruno, J.G., and Miner, J.C. (2013). Therapeutic nucleic acid-3'—Conjugates. (Nos. 7,910,297, 8,318,920, and 8,389,710), U.S. Patent.
Hakulinen, 1998, Complement-mediated killing of microtumors in vitro, Am. J. Path., 153, 845, 10.1016/S0002-9440(10)65626-X
Stecker, 2012, Dynamics and visualization of MCF7 adenocarcinoma cell death by aptamer-C1q-mediated membrane attack, Nucleic Acid Ther., 22, 275, 10.1089/nat.2012.0355
Chu, 2006, Aptamer:toxin conjugates that specifically target prostate tumor cells, Cancer Res., 66, 5989, 10.1158/0008-5472.CAN-05-4583
Bagalkot, 2006, An aptamer-doxorubicin physical conjugate as a novel targeted drug-delivery platform, Angew. Chem. Int. Ed. Eng., 45, 8149, 10.1002/anie.200602251
Huang, 2009, Molecular assembly of an aptamer-drug conjugate for targeted drug delivery to tumor cells, Chembiochem., 10, 862, 10.1002/cbic.200800805
Tan, 2011, Molecular aptamers for drug delivery, Trends Biotechnol., 29, 634, 10.1016/j.tibtech.2011.06.009
Borbas, 2007, Design and synthesis of mono- and multimeric targeted radiopharmaceuticals based on novel cyclen ligands coupled to anti-MUC1 aptamers for the diagnostic imaging and targeted radiotherapy of cancer, Bioconj. Chem., 18, 1205, 10.1021/bc0700741
Perkins, 2009, Anti-MUC1 aptamers: radiolabelling with (99m) Tc and biodistribution in MCF-7 tumour-bearing mice, Nucl. Med. Biol., 36, 703, 10.1016/j.nucmedbio.2009.04.004
Dwarakanath, 2007, Antibody-quantum dot conjugates exhibit enhanced antibacterial effect vs. unconjugated quantum dots, Folia Microbiol., 52, 31, 10.1007/BF02932134
Ferreira, 2009, Phototoxic aptamers selectively enter and kill epithelial cancer cells, Nucleic Acids Res., 37, 866, 10.1093/nar/gkn967
Jin, 2009, Antimicrobial efficacy of zinc oxide quantum dots against Listeria monocytogenes, Salmonella enteritidis, and Escherichia coli O157:H7, J. Food Sci., 74, 46, 10.1111/j.1750-3841.2008.01013.x
Samia, 2006, Quantum dot-based energy transfer: perspectives and potential for applications in photodynamic therapy, Photochem. Photobiol., 82, 617, 10.1562/2005-05-11-IR-525
Shi, 2006, Singlet oxygen generation from water-soluble quantum dot-organic dye nanocomposites, J. Am. Chem. Soc., 128, 6278, 10.1021/ja057959c
Yang, 2011, Angiogenin-mediated photosensitizer-aptamer conjugate for photodynamic therapy, Chem. Med. Chem., 6, 1778, 10.1002/cmdc.201100226
Yang, 2012, Near-infrared light-triggered, targeted drug delivery to cancer cells by aptamer-gated nanovehicles, Adv. Mater., 24, 2890, 10.1002/adma.201104797
Beqa, 2011, Gold nano-popcorn attached SWCNT hybrid nanomaterial for targeted diagnosis and photothermal therapy of human breast cancer cells, ACS Appl. Mater. Interfaces, 3, 3316, 10.1021/am2004366
Farokhzad, 2006, Targeted nanoparticle-aptamer bioconjugates for cancer chemotherapy in vivo, Proc. Natl. Acad. Sci. USA, 103, 6315, 10.1073/pnas.0601755103
Huang, 2008, Cancer cell targeting using multiple aptamers conjugated on nanorods, Anal. Chem., 80, 567, 10.1021/ac702322j
Huang, 2008, Selective photothermal therapy for mixed cancer cells using aptamer-conjugated nanorods, Langmuir, 24, 11860, 10.1021/la801969c
Li, 2012, Polyvalent mesoporous silica nanoparticle-aptamer bioconjugates target breast cancer cells, Adv. Health Mater., 1, 567, 10.1002/adhm.201200116
Liu, 2009, Sharper and faster “nano darts” kill more bacteria: A study of antibacterial activity of individually dispersed pristine single-walled carbon nanotube, ACS Nano, 3, 3891, 10.1021/nn901252r
Wang, 2012, Assembly of aptamer switch probes and photosensitizer on gold nanorods for targeted photothermal and photodynamic cancer therapy, ACS Nano, 6, 5070, 10.1021/nn300694v
Yang, 2011, Aptamer-conjugated nanomaterials and their applications, Adv. Drug Deliv. Rev., 63, 1361, 10.1016/j.addr.2011.10.002
Berezhnoy, 2012, Thermal stability of siRNA modulates aptamer-conjugated siRNA inhibition, Mol. Ther. Nucl. Acids, 1, e51, 10.1038/mtna.2012.41
Dassie, 2009, Systemic administration of optimized aptamer-siRNA chimeras promotes regression of PSMA-expressing tumors, Nat. Biotechnol., 27, 839, 10.1038/nbt.1560
Neff, 2011, An aptamer-siRNA chimera suppresses HIV-1 viral loads and protects from helper CD4 (+) T cell decline in humanized mice, Sci. Transl. Med., 3, 66ra6, 10.1126/scitranslmed.3001581
Zhou, 2012, Current progress of RNA aptamer-based therapeutics, Front. Genet., 3, 1, 10.3389/fgene.2012.00234
Bruno, 2008, Selective glutaraldehyde-mediated coupling of proteins to the 3' adenine terminus of Polymerase Chain Reaction products, J. Biomolec. Techn., 19, 177
Bruno, J.G. (2013). Biomedical Applications of Aptamers, Nova Science Publishers.
Aarons, 1983, The binding of ibuprofen to plasma proteins, Eur. J. Clin. Pharmacol., 25, 815, 10.1007/BF00542526
Cheruvallath, 1997, A quantitative circular dichroic investigation of the binding of the enantiomers of ibuprofen and naproxen to human serum albumin, J. Pharm. Biomed. Anal., 15, 1719, 10.1016/S0731-7085(96)01956-5
Manoharan, M., Rajeev, K.G., and Kesavan, V. (2009). Single-stranded and double-stranded oligonucleotides comprising a 2-arylpropyl moiety. (No. 12/604,897, filed), U.S. Patent Application.
Stasiak, 2010, In vivo assessment of parenteral formulations of oligo (3-hydroxybutyric acid) conjugates with the model compound ibuprofen, AAPS Pharm. Sci. Tech., 11, 1636, 10.1208/s12249-010-9545-2
Zion, T.C., and Lancaster, T.M. (2011). Polynucleotide aptamers-based cross-linked materials and uses thereof. (No. 13/145,531), U.S. Patent Application.
Zsila, 2011, Evaluation of drug-human serum albumin binding interactions with support vector machine aided online automated docking, Bioinformatics, 27, 1806, 10.1093/bioinformatics/btr284
Wright, 2012, Immunotherapy of breast cancer, Expert Opin. Biol. Ther., 12, 479, 10.1517/14712598.2012.665445
Wu, 2005, Arming antibodies: prospects and challenges for immunoconjugates, Nat. Biotechnol., 23, 1137, 10.1038/nbt1141
Bruno, 2012, Development, screening, and analysis of a small DNA aptamer library potentially useful for diagnosis and passive immunity of arboviruses, BMC Res. Notes, 5, 633, 10.1186/1756-0500-5-633
Chen, 2013, Function of ssDNA aptamer and aptamer pool against Mycobacterium tuberculosis in a mouse model, Mol. Med. Rep., 7, 669, 10.3892/mmr.2012.1229
Cheng, 2008, Potent inhibition of human influenza H5N1 virus by oligonucleotides derived by SELEX, Biochem. Biophys. Res. Commun., 366, 670, 10.1016/j.bbrc.2007.11.183
Mullis, K.B. Chemically programmable immunity. (Nos. 7,422,746, 7,645,743, 7,850,795, 8,236,321, and 8,263,082), U.S. Patent.
Bruno, J.G. (2013). Biomedical Applications of Aptamers, Nova Science Publishers.
Fan, 2008, Protective effects of anti-ricin A-chain RNA aptamer against ricin toxicity, World J. Gastroenterol., 14, 6360, 10.3748/wjg.14.6360
Lauridsen, 2012, Nucleic acid aptamers against biotoxins: A new paradigm toward the treatment and diagnostic approach, Nucleic Acid Ther., 22, 371, 10.1089/nat.2012.0377
Dobler, R.K., and Maki, W.C. (2005, January 4–5). Mars health care delivery systems: Aptamers provide critical technology. 12th NASA Symposium of VLSA Design, Coeur d'Alene, ID, USA.
Healy, 2004, Pharmacokinetics and biodistribution of novel aptamer compositions, Pharm. Res., 21, 2234, 10.1007/s11095-004-7676-4
King, 1998, Novel combinatorial selection of phosphorothioate oligonucleotide aptamers, Biochemistry, 37, 16489, 10.1021/bi981780f
Boomer, 2005, Conjugation to polyethylene glycol polymer promotes aptamer biodistribution to healthy and inflamed tissues, Oligonucleotides, 15, 183, 10.1089/oli.2005.15.183
Blackshaw, 2012, PEGylation and biodistribution of an anti-MUC1 aptamer in MCF-7 tumor-bearing mice, Bioconjug. Chem., 237, 1377
Nordhoff, 1994, Synthesis and properties of oligodeoxyribonucleotide-polyethylene glycol conjugates, Nucleic Acids Res., 22, 4810, 10.1093/nar/22.22.4810
Dougan, 2000, Extending the lifetime of anticoagulant oligodeoxynucleotide aptamers in blood, Nucl. Med. Biol., 27, 289, 10.1016/S0969-8051(99)00103-1
Farkas, 2002, CD59 blocks not only the insertion of C9 into MAC but inhibits ion channel formation by homologous C5b-8 as well as C5b-9, J. Physiol., 539, 537, 10.1113/jphysiol.2001.013381
Dominguez, 2003, Early mechanisms of Leishmania. infection in human blood, Microbes Infect., 5, 507, 10.1016/S1286-4579(03)00071-6
Carter, 2011, Coupling strategies for the synthesis of peptide-oligonucleotide conjugates for patterned synthetic biomineralization, J. Nucleic Acids., 2011, 926595, 10.4061/2011/926595
Mallikaratchy, 2011, A multivalent DNA aptamer specific for the B-cell receptor on human lymphoma and leukemia, Nucleic Acids Res., 39, 2458, 10.1093/nar/gkq996
Tian, 2009, Bivalent ligands with long nanometer-scale flexible linkers, Biochemistry, 48, 264, 10.1021/bi801630b
Yang, 2011, Engineering polymeric aptamers for selective cytotoxicity, J. Am. Chem. Soc., 133, 13380, 10.1021/ja201285y
Murray, E., Gregg, D.A., Norton, M.L., Swick, J.T., and Towler, W.I. (2012). Method for a continuous rapid thermal cycle system. (No. 8,163,489), U.S. Patent.
Wahajuddin, 2012, Superparamagnetic iron oxide nanoparticles: Magnetic nanoplatforms as drug carriers, Int. J. Nanomed., 7, 3445, 10.2147/IJN.S30320
Nair, 2010, Aptamer conjugated magnetic nanoparticles as nanosurgeons, Nanotechnology, 21, 455102, 10.1088/0957-4484/21/45/455102
Silva, 2011, Application of hyperthermia induced by superparamagnetic iron oxide nanoparticles in glioma treatment, Int. J. Nanomed., 6, 591
Hilger, 2012, Iron oxide-based nanostructures for MRI and magnetic hyperthermia, Nanomedicine, 7, 1443, 10.2217/nnm.12.112
Kobayashi, 2011, Cancer hyperthermia using magnetic nanoparticles, Biotechnol. J., 6, 1342, 10.1002/biot.201100045
Cavaliere, 1967, Selective heat sensitivity of cancer cells. Biochemical and clinical studies, Cancer, 20, 1351, 10.1002/1097-0142(196709)20:9<1351::AID-CNCR2820200902>3.0.CO;2-#
Christophi, 1998, The treatment of malignancy by hyperthermia, Surg. Oncol., 7, 83, 10.1016/S0960-7404(99)00007-9
Glazer, 2011, Non-invasive radiofrequency ablation of malignancies mediated by quantum dots, gold nanoparticles and carbon nanotubes, Ther. Deliv., 2, 1325, 10.4155/tde.11.102
Glazer, 2010, Radiofrequency field-induced thermal cytotoxicity in cancer cells treated with fluorescent nanoparticles, Cancer, 116, 3285, 10.1002/cncr.25135
Glazer, 2010, Noninvasive radiofrequency field destruction of pancreatic adenocarcinoma xenografts treated with targeted gold nanoparticles, Clin. Cancer Res., 16, 5712, 10.1158/1078-0432.CCR-10-2055
Wang, 2011, Study of the bioeffects of CdTe quantum dots on Escherichia coli cells, J. Coll. Interface Sci., 363, 476, 10.1016/j.jcis.2011.08.016
Liu, 2011, CdSe quantum dot (QD)-induced morphological and functional impairments to liver in mice, PLoS One, 6, e24406, 10.1371/journal.pone.0024406
Li, 2009, Intracellular oxidative stress and cadmium ions release induce cytotoxicity of unmodified cadmium sulfide quantum dots, Toxicol. In Vitro., 23, 1007, 10.1016/j.tiv.2009.06.020
Tsay, 2007, Singlet oxygen production by peptide-coated quantum dot-photosensitizer conjugates, J. Am. Chem. Soc., 129, 6865, 10.1021/ja070713i
Yaghini, 2009, Quantum dots and their potential biomedical applications in photosensitization for photodynamic therapy, Nanomedicine, 4, 353, 10.2217/nnm.09.9
Savla, 2011, Tumor targeted quantum dot-mucin 1 aptamer-doxorubicin conjugate for imaging and treatment of cancer, J. Control. Release, 153, 16, 10.1016/j.jconrel.2011.02.015
Taghdisi, 2011, Reversible targeting and controlled release delivery of daunorubicin to cancer cells by aptamer-wrapped carbon nanotubes, Eur. J. Pharm. Biopharm., 77, 200, 10.1016/j.ejpb.2010.12.005
Tan, 2011, Molecular aptamers for drug delivery, Trends Biotechnol., 9, 634, 10.1016/j.tibtech.2011.06.009
Lu, 2010, Gold nano-popcorn-based targeted diagnosis, nanotherapy treatment, and in situ monitoring of photothermal therapy response of prostate cancer cells using surface-enhanced Raman spectroscopy, J. Am. Chem. Soc., 132, 18103, 10.1021/ja104924b
Jarmila, 2011, Chitosan derivatives with antimicrobial, antitumour and antioxidant activities-a review, Curr. Pharm. Des., 17, 3596, 10.2174/138161211798194468
Patel, 2010, Chitosan mediated targeted drug delivery system: A review, J. Pharm. Pharmaceut. Sci., 13, 536
Bowman, 2006, Chitosan nanoparticles for oral drug and gene delivery, Int. J. Nanomedicine, 1, 117, 10.2147/nano.2006.1.2.117
Hassan, 1993, Targeting anticancer drugs to the brain. I: Enhanced brain delivery of oxantrazole following administration in magnetic cationic microspheres, J. Drug Target., 1, 7, 10.3109/10611869308998759
Tallury, 2009, Ultra-small water dispersible fluorescent chitosan nanoparticles: Synthesis, characterization and specific targeting, Chem. Commun., 7, 2347, 10.1039/b901729a
Mann, 2011, Thioaptamer conjugated liposomes for tumor vasculature targeting, Oncotarget, 2, 298, 10.18632/oncotarget.261
Kolhe, 2004, Hyperbranched polymer-drug conjugates with high drug payload for enhanced cellular delivery, Pharm. Res., 21, 2185, 10.1007/s11095-004-7670-x
Kolhe, 2006, Preparation, cellular transport, and activity of polyamidoamine-based dendritic nanodevices with a high drug payload, Biomaterials, 27, 660, 10.1016/j.biomaterials.2005.06.007
Kim, 2008, Molecular assembly for high-performance bivalent nucleic acid inhibitor, Proc. Natl. Acad. Sci. USA, 105, 5664, 10.1073/pnas.0711803105
McNamara, 2008, Multivalent 4-1BB binding aptamers costimulate CD8+ T cells and inhibit tumor growth in mice, J. Clin. Invest., 118, 376, 10.1172/JCI33365
Wachowius, 2011, Probing essential nucleobase functional groups in aptamers and deoxyribozymes by nucleotide analogue interference mapping of DNA, J. Am. Chem. Soc., 133, 14888, 10.1021/ja205894w
Hollenstein, 2011, Expanding the catalytic repertoire of DNAzymes by modified nucleosides, ChimiaInt. J. Chem., 65, 770
Sanghvi, 2011, A status update of modified oligonucleotides for chemotherapeutics applications, Curr. Protoc. Nucleic Acid Chem., 46, 4.1.1, 10.1002/0471142700.nc0401s46