A Review of Phosphide‐Based Materials for Electrocatalytic Hydrogen Evolution

Advanced Energy Materials - Tập 5 Số 24 - 2015
Peng Xiao1, Wei Chen2,3, Xin Wang1
1School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, 637459, Singapore
2Department of Physics, National University of Singapore, Singapore, 117542, Singapore
3Departments of ChemistryNational University of Singapore, 3 Science Drive 3, Singapore, 117543

Tóm tắt

Hydrogen evolution by means of electrocatalytic water‐splitting is pivotal for efficient and economical production of hydrogen, which relies on the development of inexpensive, highly active catalysts. In addition to sulfides, the search for non‐noble metal catalysts has been mainly directed at phosphides due to the superb activity of phosphides for hydrogen evolution reaction (HER) and their low‐cost considering the abundance of the non‐noble constituents of phosphides. Here, recent research focusing on phosphides is summarized based on their synthetic methodology. A comparative study of the catalytic activity of different phosphides towards HER is then conducted. The catalytic activity is evaluated by overpotentials at fixed current density, Tafel slope, turnover frequency, and the Gibbs free energy of hydrogen adsorption. Based on the methods discussed, perspectives for the various methods of phosphides synthesis are given, and the origins of the high activity and the role of phosphorus on the improved activity towards HER are discussed.

Từ khóa


Tài liệu tham khảo

10.1126/science.1141483

10.1016/S0022-0728(77)80363-X

10.1021/ar5002022

10.1021/cs500070x

10.1021/nl403620g

10.1021/ja404523s

10.1039/C4EE01760A

10.1016/j.apcatb.2012.05.013

10.1002/anie.201402315

10.1039/c1ee01970h

10.1021/nl400258t

10.1021/nl401944f

10.1021/ja501497n

10.1039/c3ee42413h

10.1039/c2ee02618j

10.1039/c2ee03309g

10.1039/C3SC51711J

10.1021/jp044301x

10.1016/j.cattod.2008.09.019

10.1021/ja403440e

10.1149/1.2358292

10.1149/1.1856988

10.1002/anie.201407031

10.1021/ja0504690

10.1023/B:CATL.0000007163.01772.19

10.1016/S0926-860X(01)00924-3

10.1006/jcat.2002.3520

10.1016/j.jcat.2005.09.032

10.1016/S0021-9517(02)00069-6

10.1006/jcat.2002.3524

10.1006/jcat.2001.3283

10.1039/C4EE00957F

10.1002/anie.201403842

10.1021/nn5022204

10.1016/j.jcat.2015.03.012

10.1039/C5CP01065A

10.1021/cr400020d

10.1007/s10562-012-0929-7

10.1021/ja038037h

10.1021/cm052080h

10.1021/ja068502l

10.1021/nn900574r

10.1039/c3cc45416a

10.1039/c3cc44076a

10.1002/anie.201402646

10.1039/C4TA06642A

10.1021/cm502035s

10.1039/C4CC04709E

10.1021/nn5048553

10.1016/j.nanoen.2014.08.013

10.1021/acs.chemmater.5b01284

10.1021/ja0540019

10.1039/C4TA04867A

10.1039/C4EE02940B

10.1246/cl.1998.207

10.1021/ja028180v

10.1002/adma.201401692

10.1126/science.1194975

10.1021/nl201874w

10.1021/cs5014943

10.1016/j.jcat.2013.01.015

10.1016/j.jcat.2008.12.003

10.1002/anie.201408222

10.1016/j.jcat.2009.02.008

10.1016/j.jcat.2010.02.031

10.1039/c4cp00482e

10.1039/C4CP02613F

10.1021/ja503372r

10.1002/anie.201406848

10.1016/j.apcatb.2014.09.016

10.1039/C4TA03261F

10.1039/C4CC05285D

10.1039/C4TA03638G

10.1021/cm501273s

10.1039/C4NR03037K

10.1021/cs501106g

10.1021/am5064684

10.1039/C4TA02368D

10.1002/anie.201404161

10.1039/C4TA06458E

10.1039/C4TA06630H

10.1039/C5TA01103E

10.1039/C4TA06651K

10.1039/C4CC05936K

10.1039/C4TA04434G

10.1016/j.ijhydene.2014.08.099

10.1021/am5060178

10.1016/j.jpowsour.2014.12.095

10.1006/jssc.1999.8499

10.1039/C4TA04758C

10.1039/C4CC02364A

10.1039/C4TA03468F

10.1016/S1388-2481(02)00372-7

10.1149/1.2981040

10.1002/anie.201501616

10.1039/C4CS00448E

10.1021/ja408329q

10.1039/C5NR01955A

10.1039/C5TA02105G

10.1126/science.1200448