A Review of Innovation-Based Methods to Jointly Estimate Model and Observation Error Covariance Matrices in Ensemble Data Assimilation
Tóm tắt
Từ khóa
Tài liệu tham khảo
Anderson, J. L., 2007: An adaptive covariance inflation error correction algorithm for ensemble filters. Tellus, 59A, 210–224, https://doi.org/10.1111/j.1600-0870.2006.00216.x.
Anderson, J. L., 2009: Spatially and temporally varying adaptive covariance inflation for ensemble filters. Tellus, 61A, 72–83, https://doi.org/10.1111/j.1600-0870.2008.00361.x.
Anderson, J. L., and S. L. Anderson, 1999: A Monte Carlo implementation of the nonlinear filtering problem to produce ensemble assimilations and forecasts. Mon. Wea. Rev., 127, 2741–2758, https://doi.org/10.1175/1520-0493(1999)127<2741:AMCIOT>2.0.CO;2.
Bélanger, P. R., 1974: Estimation of noise covariance matrices for a linear time-varying stochastic process. Automatica, 10, 267–275, https://doi.org/10.1016/0005-1098(74)90037-5.
Berry, T., and T. Sauer, 2013: Adaptive ensemble Kalman filtering of non-linear systems. Tellus, 65A, 20331, https://doi.org/10.3402/tellusa.v65i0.20331.
Berry, T., and J. Harlim, 2017: Correcting biased observation model error in data assimilation. Mon. Wea. Rev., 145, 2833–2853, https://doi.org/10.1175/MWR-D-16-0428.1.
Berry, T., and T. Sauer, 2018: Correlation between system and observation errors in data assimilation. Mon. Wea. Rev., 146, 2913–2931, https://doi.org/10.1175/MWR-D-17-0331.1.
Bishop, C. H., and E. A. Satterfield, 2013: Hidden error variance theory. Part I: Exposition and analytic model. Mon. Wea. Rev., 141, 1454–1468, https://doi.org/10.1175/MWR-D-12-00118.1.
Bishop, C. H., E. A. Satterfield, and K. T. Shanley, 2013: Hidden error variance theory. Part II: An instrument that reveals hidden error variance distributions from ensemble forecasts and observations. Mon. Wea. Rev., 141, 1469–1483, https://doi.org/10.1175/MWR-D-12-00119.1.
Blanchet, I., C. Frankignoul, and M. A. Cane, 1997: A comparison of adaptive Kalman filters for a tropical Pacific Ocean model. Mon. Wea. Rev., 125, 40–58, https://doi.org/10.1175/1520-0493(1997)125<0040:ACOAKF>2.0.CO;2.
Bocquet, M., 2011: Ensemble Kalman filtering without the intrinsic need for inflation. Nonlinear Processes Geophys., 18, 735–750, https://doi.org/10.5194/npg-18-735-2011.
Bocquet, M., and P. Sakov, 2012: Combining inflation-free and iterative ensemble Kalman filters for strongly nonlinear systems. Nonlinear Processes Geophys., 19, 383–399, https://doi.org/10.5194/npg-19-383-2012.
Bocquet, M., P. N. Raanes, and A. Hannart, 2015: Expanding the validity of the ensemble Kalman filter without the intrinsic need for inflation. Nonlinear Processes Geophys., 22, 645–662, https://doi.org/10.5194/npg-22-645-2015.
Bormann, N., A. Collard, and P. Bauer, 2010: Estimates of spatial and interchannel observation-error characteristics for current sounder radiances for numerical weather prediction. II: Application to AIRS and IASI data. Quart. J. Roy. Meteor. Soc., 136, 1051–1063, https://doi.org/10.1002/qj.615.
Bowler, N. E., 2017: On the diagnosis of model error statistics using weak-constraint data assimilation. Quart. J. Roy. Meteor. Soc., 143, 1916–1928, https://doi.org/10.1002/qj.3051.
Brankart, J.-M., E. Cosme, C.-E. Testut, P. Brasseur, and J. Verron, 2010: Efficient adaptive error parameterizations for square root or ensemble Kalman filters: Application to the control of ocean mesoscale signals. Mon. Wea. Rev., 138, 932–950, https://doi.org/10.1175/2009MWR3085.1.
Buehner, M., 2010: Error statistics in data assimilation: Estimation and modelling. Data Assimilation: Making Sense of Observations, W. Lahoz, B. Khattatov, and R. Menard, Eds., Springer, 93–112.
Campbell, W. F., E. A. Satterfield, B. Ruston, and N. L. Baker, 2017: Accounting for correlated observation error in a dual-formulation 4D variational data assimilation system. Mon. Wea. Rev., 145, 1019–1032, https://doi.org/10.1175/MWR-D-16-0240.1.
Cappé, O., 2011: Online expectation-maximisation. Mixtures: Estimation and Applications, K. L. Mengersen, C. Robert, and M. Titterington, Eds.,Wiley Series in Probability and Statistics, John Wiley & Sons, 1–53.
Carrassi, A., M. Bocquet, L. Bertino, and G. Evensen, 2018: Data assimilation in the geosciences: An overview on methods, issues and perspectives. Wiley Interdiscip. Rev.: Climate Change, 9, e535, https://doi.org/10.1002/wcc.535.
Chapnik, B., G. Desroziers, F. Rabier, and O. Talagrand, 2004: Properties and first application of an error-statistics tuning method in variational assimilation. Quart. J. Roy. Meteor. Soc., 130, 2253–2275, https://doi.org/10.1256/qj.03.26.
Cocucci, T. J., M. Pulido, M. Lucini, and P. Tandeo, 2020: Model error covariance estimation in particle and ensemble Kalman filters using an online expectation-maximization algorithm. arXiv:2003.02109, https://arxiv.org/pdf/2003.02109.pdf.
Corazza, M., E. Kalnay, D. J. Patil, R. Morss, M. Cai, I. Szunyogh, B. R. Hunt, and J. A. Yorke, 2003: Use of the breeding technique to estimate the structure of the analysis “errors of the day.” Nonlinear Processes Geophys., 10, 233–243, https://doi.org/10.5194/npg-10-233-2003.
Daescu, D. N., and R. Todling, 2010: Adjoint sensitivity of the model forecast to data assimilation system error covariance parameters. Quart. J. Roy. Meteor. Soc., 136, 2000–2012, https://doi.org/10.1002/qj.693.
Daescu, D. N., and R. H. Langland, 2013: Error covariance sensitivity and impact estimation with adjoint 4D-Var: Theoretical aspects and first applications to NAVDAS-AR. Quart. J. Roy. Meteor. Soc., 139, 226–241, https://doi.org/10.1002/qj.1943.
Daley, R., 1991: Atmospheric Data Analysis. Cambridge University Press, 457 pp.
Daley, R., 1992: Estimating model-error covariances for application to atmospheric data assimilation. Mon. Wea. Rev., 120, 1735–1746, https://doi.org/10.1175/1520-0493(1992)120<1735:EMECFA>2.0.CO;2.
Dee, D. P., 1995: On-line estimation of error covariance parameters for atmospheric data assimilation. Mon. Wea. Rev., 123, 1128–1145, https://doi.org/10.1175/1520-0493(1995)123<1128:OLEOEC>2.0.CO;2.
Dee, D. P., 2005: Bias and data assimilation. Quart. J. Roy. Meteor. Soc., 131, 3323–3343, https://doi.org/10.1256/qj.05.137.
Dee, D. P., and A. M. da Silva, 1999: Maximum-likelihood estimation of forecast and observation error covariance parameters. Part I: Methodology. Mon. Wea. Rev., 127, 1822–1834, https://doi.org/10.1175/1520-0493(1999)127<1822:MLEOFA>2.0.CO;2.
Dee, D. P., S. E. Cohn, A. Dalcher, and M. Ghil, 1985: An efficient algorithm for estimating noise covariances in distributed systems. IEEE Trans. Autom. Control, 30, 1057–1065, https://doi.org/10.1109/TAC.1985.1103837.
Dee, D. P., G. Gaspari, C. Redder, L. Rukhovets, and A. M. da Silva, 1999: Maximum-likelihood estimation of forecast and observation error covariance parameters. Part II: Applications. Mon. Wea. Rev., 127, 1835–1849, https://doi.org/10.1175/1520-0493(1999)127<1835:MLEOFA>2.0.CO;2.
DelSole, T., and X. Yang, 2010: State and parameter estimation in stochastic dynamical models. Physica D, 239, 1781–1788, https://doi.org/10.1016/j.physd.2010.06.001.
Dempster, A. P., N. M. Laird, and D. B. Rubin, 1977: Maximum likelihood from incomplete data via the EM algorithm. J. Roy. Stat. Soc., 39B, 1–22, https://doi.org/10.1111/j.2517-6161.1977.tb01600.x.
Desroziers, G., and S. Ivanov, 2001: Diagnosis and adaptive tuning of observation-error parameters in a variational assimilation. Quart. J. Roy. Meteor. Soc., 127, 1433–1452, https://doi.org/10.1002/qj.49712757417.
Desroziers, G., L. Berre, B. Chapnik, and P. Poli, 2005: Diagnosis of observation, background and analysis-error statistics in observation space. Quart. J. Roy. Meteor. Soc., 131, 3385–3396, https://doi.org/10.1256/qj.05.108.
Dreano, D., P. Tandeo, M. Pulido, T. Chonavel, B. A. It-El-Fquih, and I. Hoteit, 2017: Estimating model error covariances in nonlinear state-space models using Kalman smoothing and the expectation-maximisation algorithm. Quart. J. Roy. Meteor. Soc., 143, 1877–1885, https://doi.org/10.1002/qj.3048.
Duník, J., O. Straka, O. Kost, and J. Havlík, 2017: Noise covariance matrices in state-space models: A survey and comparison of estimation methods-Part I. Int. J. Adapt. Control Signal Process., 31, 1505–1543, https://doi.org/10.1002/acs.2783.
El Gharamti, M., 2018: Enhanced adaptive inflation algorithm for ensemble filters. Mon. Wea. Rev., 146, 623–640, https://doi.org/10.1175/MWR-D-17-0187.1.
Evensen, G., 2009: Data Assimilation: The Ensemble Kalman Filter. Springer Science and Business Media, 332 pp.
Frei, M., and H. R. Künsch, 2012: Sequential state and observation noise covariance estimation using combined ensemble Kalman and particle filters. Mon. Wea. Rev., 140, 1476–1495, https://doi.org/10.1175/MWR-D-10-05088.1.
Fu, L.-L., I. Fukumori, and R. N. Miller, 1993: Fitting dynamic models to the Geosat sea level observations in the tropical Pacific Ocean. Part II: A linear, wind-driven model. J. Phys. Oceanogr., 23, 2162–2181, https://doi.org/10.1175/1520-0485(1993)023<2162:FDMTTG>2.0.CO;2.
Ghil, M., and P. Malanotte-Rizzoli, 1991: Data assimilation in meteorology and oceanography. Advances in Geophysics, Vol. 33, Academic Press, 141–266, https://doi.org/10.1016/S0065-2687(08)60442-2.
Guillet, O., A. T. Weaver, X. Vasseur, Y. Michel, S. Gratton, and S. Gürol, 2019: Modelling spatially correlated observation errors in variational data assimilation using a diffusion operator on an unstructured mesh. Quart. J. Roy. Meteor. Soc., 145, 1947–1967, https://doi.org/10.1002/qj.3537.
Harlim, J., 2018: Ensemble Kalman filters. Data-Driven Computational Methods: Parameter and Operator Estimations, J. Harlim, Ed., Cambridge University Press, 31–59.
Harlim, J., A. Mahdi, and A. J. Majda, 2014: An ensemble Kalman filter for statistical estimation of physics constrained nonlinear regression models. J. Comput. Phys., 257, 782–812, https://doi.org/10.1016/j.jcp.2013.10.025.
Hollingsworth, A., and P. Lönnberg, 1986: The statistical structure of short-range forecast errors as determined from radiosonde data. Part I: The wind field. Tellus, 38A, 111–136, https://doi.org/10.3402/tellusa.v38i2.11707.
Hotta, D., E. Kalnay, Y. Ota, and T. Miyoshi, 2017: EFSR: Ensemble forecast sensitivity to observation error covariance. Mon. Wea. Rev., 145, 5015–5031, https://doi.org/10.1175/MWR-D-17-0122.1.
Houtekamer, P. L., and F. Zhang, 2016: Review of the ensemble Kalman filter for atmospheric data assimilation. Mon. Wea. Rev., 144, 4489–4532, https://doi.org/10.1175/MWR-D-15-0440.1.
Houtekamer, P. L., H. L. Mitchell, and X. Deng, 2009: Model error representation in an operational ensemble Kalman filter. Mon. Wea. Rev., 137, 2126–2143, https://doi.org/10.1175/2008MWR2737.1.
Ide, K., P. Courtier, M. Ghil, and A. C. Lorenc, 1997: Unified notation for data assimilation: Operational, sequential and variational. J. Meteor. Soc. Japan, 75, 181–189, https://doi.org/10.2151/jmsj1965.75.1B_181.
Janjić, T., and Coauthors, 2018: On the representation error in data assimilation. Quart. J. Roy. Meteor. Soc., 144, 1257–1278, https://doi.org/10.1002/qj.3130.
Jazwinski, A. H., 1970: Stochastic Processes and Filtering Theory. Academic Press, 376 pp.
Kantas, N., A. Doucet, S. S. Singh, J. Maciejowski, and N. Chopin, 2015: On particle methods for parameter estimation in state-space models. Stat. Sci., 30, 328–351, https://doi.org/10.1214/14-STS511.
Katzfuss, M., J. R. Stroud, and C. K. Wikle, 2020: Ensemble Kalman methods for high-dimensional hierarchical dynamic space-time models. J. Amer. Stat. Assoc., 115, 866–885, https://doi.org/10.1080/01621459.2019.1592753.
Kotsuki, S., T. Miyoshi, K. Terasaki, G.-Y. Lien, and E. Kalnay, 2017a: Assimilating the global satellite mapping of precipitation data with the Nonhydrostatic Icosahedral Atmospheric Model (NICAM). J. Geophys. Res. Atmos., 122, 631–650, https://doi.org/10.1002/2016jd025355.
Kotsuki, S., Y. Ota, and T. Miyoshi, 2017b: Adaptive covariance relaxation methods for ensemble data assimilation: Experiments in the real atmosphere. Quart. J. Roy. Meteor. Soc., 143, 2001–2015, https://doi.org/10.1002/qj.3060.
Leith, C. E., 1978: Objective methods for weather prediction. Annu. Rev. Fluid Mech., 10, 107–128, https://doi.org/10.1146/annurev.fl.10.010178.000543.
Li, H., E. Kalnay, and T. Miyoshi, 2009: Simultaneous estimation of covariance inflation and observation errors within an ensemble Kalman filter. Quart. J. Roy. Meteor. Soc., 135, 523–533, https://doi.org/10.1002/qj.371.
Liang, X., X. Zheng, S. Zhang, G. Wu, Y. Dai, and Y. Li, 2012: Maximum likelihood estimation of inflation factors on error covariance matrices for ensemble Kalman filter assimilation. Quart. J. Roy. Meteor. Soc., 138, 263–273, https://doi.org/10.1002/qj.912.
Liu, J., and M. West, 2001: Combined parameter and state estimation in simulation-based filtering. Sequential Monte Carlo Methods in Practice, A. Doucet, N. Freitas, and N. Gordon, Eds., Springer, 197–223.
Liu, Y., J.-M. Haussaire, M. Bocquet, Y. Roustan, O. Saunier, and A. Mathieu, 2017: Uncertainty quantification of pollutant source retrieval: Comparison of Bayesian methods with application to the Chernobyl and Fukushima Daiichi accidental releases of radionuclides. Quart. J. Roy. Meteor. Soc., 143, 2886–2901, https://doi.org/10.1002/qj.3138.
Mehra, R. K., 1970: On the identification of variances and adaptive Kalman filtering. IEEE Trans. Autom. Control, 15, 175–184, https://doi.org/10.1109/TAC.1970.1099422.
Mehra, R. K., 1972: Approaches to adaptive filtering. IEEE Trans. Autom. Control, 17, 693–698, https://doi.org/10.1109/TAC.1972.1100100.
Ménard, R., 2016: Error covariance estimation methods based on analysis residuals: Theoretical foundation and convergence properties derived from simplified observation networks. Quart. J. Roy. Meteor. Soc., 142, 257–273, https://doi.org/10.1002/qj.2650.
Menemenlis, D., and M. Chechelnitsky, 2000: Error estimates for an ocean general circulation model from altimeter and acoustic tomography data. Mon. Wea. Rev., 128, 763–778, https://doi.org/10.1175/1520-0493(2000)128<0763:EEFAOG>2.0.CO;2.
Ménétrier, B., and T. Auligné, 2015: Optimized localization and hybridization to filter ensemble-based covariances. Mon. Wea. Rev., 143, 3931–3947, https://doi.org/10.1175/MWR-D-15-0057.1.
Merchant, C. J., S. Saux-Picart, and J. Waller, 2020: Bias correction and covariance parameters for optimal estimation by exploiting matched in-situ references. Remote Sens. Environ., 237, 111590, https://doi.org/10.1016/j.rse.2019.111590.
Mitchell, H. L., and P. L. Houtekamer, 2000: An adaptive ensemble Kalman filter. Mon. Wea. Rev., 128, 416–433, https://doi.org/10.1175/1520-0493(2000)128<0416:AAEKF>2.0.CO;2.
Mitchell, L., and A. Carrassi, 2015: Accounting for model error due to unresolved scales within ensemble Kalman filtering. Quart. J. Roy. Meteor. Soc., 141, 1417–1428, https://doi.org/10.1002/qj.2451.
Miyoshi, T., 2011: The Gaussian approach to adaptive covariance inflation and its implementation with the local ensemble transform Kalman filter. Mon. Wea. Rev., 139, 1519–1535, https://doi.org/10.1175/2010MWR3570.1.
Miyoshi, T., Y. Sato, and T. Kadowaki, 2010: Ensemble Kalman filter and 4D-Var intercomparison with the Japanese operational global analysis and prediction system. Mon. Wea. Rev., 138, 2846–2866, https://doi.org/10.1175/2010MWR3209.1.
Miyoshi, T., E. Kalnay, and H. Li, 2013: Estimating and including observation-error correlations in data assimilation. Inverse Probl. Sci. Eng., 21, 387–398, https://doi.org/10.1080/17415977.2012.712527.
Pham, D. T., J. Verron, and M. C. Roubaud, 1998: A singular evolutive extended Kalman filter for data assimilation in oceanography. J. Mar. Syst., 16, 323–340, https://doi.org/10.1016/S0924-7963(97)00109-7.
Pulido, M., P. Tandeo, M. Bocquet, A. Carrassi, and M. Lucini, 2018: Stochastic parameterization identification using ensemble Kalman filtering combined with maximum likelihood methods. Tellus, 70A, 1–17, https://doi.org/10.1080/16000870.2018.1442099.
Purser, R. J., and D. F. Parrish, 2003: A Bayesian technique for estimating continuously varying statistical parameters of a variational assimilation. Meteor. Atmos. Phys., 82, 209–226, https://doi.org/10.1007/s00703-001-0583-x.
Raanes, P. N., M. Bocquet, and A. Carrassi, 2019: Adaptive covariance inflation in the ensemble Kalman filter by Gaussian scale mixtures. Quart. J. Roy. Meteor. Soc., 145, 53–75, https://doi.org/10.1002/qj.3386.
Rodwell, M. J., and T. N. Palmer, 2007: Using numerical weather prediction to assess climate models. Quart. J. Roy. Meteor. Soc., 133, 129–146, https://doi.org/10.1002/qj.23.
Ruiz, J. J., M. Pulido, and T. Miyoshi, 2013a: Estimating model parameters with ensemble-based data assimilation: A review. J. Meteor. Soc. Japan, 91, 79–99, https://doi.org/10.2151/jmsj.2013-201.
Ruiz, J. J., M. Pulido, and T. Miyoshi, 2013b: Estimating model parameters with ensemble-based data assimilation: Parameter covariance treatment. J. Meteor. Soc. Japan, 91, 453–469, https://doi.org/10.2151/jmsj.2013-403.
Rutherford, I. D., 1972: Data assimilation by statistical interpolation of forecast error fields. J. Atmos. Sci., 29, 809–815, https://doi.org/10.1175/1520-0469(1972)029<0809:DABSIO>2.0.CO;2.
Satterfield, E. A., D. Hodyss, D. D. Kuhl, and C. H. Bishop, 2018: Observation-informed generalized hybrid error covariance models. Mon. Wea. Rev., 146, 3605–3622, https://doi.org/10.1175/MWR-D-18-0016.1.
Scheffler, G., J. Ruiz, and M. Pulido, 2019: Inference of stochastic parametrizations for model error treatment using nested ensemble Kalman filters. Quart. J. Roy. Meteor. Soc., 145, 2028–2045, https://doi.org/10.1002/qj.3542.
Schmidt, S. F., 1966: Applications of state space methods to navigation problems. Adv. Control Syst., 3, 293–340, https://doi.org/10.1016/B978-1-4831-6716-9.50011-4.
Shumway, R. H., and D. S. Stoffer, 1982: An approach to time series smoothing and forecasting using the EM algorithm. J. Time Ser. Anal., 3, 253–264, https://doi.org/10.1111/j.1467-9892.1982.tb00349.x.
Solonen, A., J. Hakkarainen, A. Ilin, M. Abbas, and A. Bibov, 2014: Estimating model error covariance matrix parameters in extended Kalman filtering. Nonlinear Processes Geophys., 21, 919–927, https://doi.org/10.5194/npg-21-919-2014.
Stroud, J. R., and T. Bengtsson, 2007: Sequential state and variance estimation within the ensemble Kalman filter. Mon. Wea. Rev., 135, 3194–3208, https://doi.org/10.1175/MWR3460.1.
Stroud, J. R., M. Katzfuss, and C. K. Wikle, 2018: A Bayesian adaptive ensemble Kalman filter for sequential state and parameter estimation. Mon. Wea. Rev., 146, 373–386, https://doi.org/10.1175/MWR-D-16-0427.1.
Tandeo, P., M. Pulido, and F. Lott, 2015: Offline parameter estimation using EnKF and maximum likelihood error covariance estimates: Application to a subgrid-scale orography parametrization. Quart. J. Roy. Meteor. Soc., 141, 383–395, https://doi.org/10.1002/qj.2357.
Todling, R., 2015: A lag-1 smoother approach to system-error estimation: Sequential method. Quart. J. Roy. Meteor. Soc., 141, 1502–1513, https://doi.org/10.1002/qj.2460.
Ueno, G., and N. Nakamura, 2014: Iterative algorithm for maximum-likelihood estimation of the observation-error covariance matrix for ensemble-based filters. Quart. J. Roy. Meteor. Soc., 140, 295–315, https://doi.org/10.1002/qj.2134.
Ueno, G., and N. Nakamura, 2016: Bayesian estimation of the observation-error covariance matrix in ensemble-based filters. Quart. J. Roy. Meteor. Soc., 142, 2055–2080, https://doi.org/10.1002/qj.2803.
Ueno, G., T. Higuchi, T. Kagimoto, and N. Hirose, 2010: Maximum likelihood estimation of error covariances in ensemble-based filters and its application to a coupled atmosphere-ocean model. Quart. J. Roy. Meteor. Soc., 136, 1316–1343, https://doi.org/10.1002/qj.654.
Wahba, G., and J. Wendelberger, 1980: Some new mathematical methods for variational objective analysis using splines and cross validation. Mon. Wea. Rev., 108, 1122–1143, https://doi.org/10.1175/1520-0493(1980)108<1122:SNMMFV>2.0.CO;2.
Waller, J. A., S. L. Dance, and N. K. Nichols, 2016: Theoretical insight into diagnosing observation error correlations using observation-minus-background and observation-minus-analysis statistics. Quart. J. Roy. Meteor. Soc., 142, 418–431, https://doi.org/10.1002/qj.2661.
Waller, J. A., S. L. Dance, and N. K. Nichols, 2017: On diagnosing observation-error statistics with local ensemble data assimilation. Quart. J. Roy. Meteor. Soc., 143, 2677–2686, https://doi.org/10.1002/qj.3117.
Wang, X., and C. H. Bishop, 2003: A comparison of breeding and ensemble transform Kalman filter ensemble forecast schemes. J. Atmos. Sci., 60, 1140–1158, https://doi.org/10.1175/1520-0469(2003)060<1140:ACOBAE>2.0.CO;2.
Weston, P. P., W. Bell, and J. R. Eyre, 2014: Accounting for correlated error in the assimilation of high-resolution sounder data. Quart. J. Roy. Meteor. Soc., 140, 2420–2429, https://doi.org/10.1002/qj.2306.
Whitaker, J. S., and T. M. Hamill, 2012: Evaluating methods to account for system errors in ensemble data assimilation. Mon. Wea. Rev., 140, 3078–3089, https://doi.org/10.1175/MWR-D-11-00276.1.
Whitaker, J. S., T. M. Hamill, X. Wei, Y. Song, and Z. Toth, 2008: Ensemble data assimilation with the NCEP global forecast system. Mon. Wea. Rev., 136, 463–482, https://doi.org/10.1175/2007MWR2018.1.
Winiarek, V., M. Bocquet, O. Saunier, and A. Mathieu, 2012: Estimation of errors in the inverse modeling of accidental release of atmospheric pollutant: Application to the reconstruction of the cesium-137 and iodine-131 source terms from the Fukushima Daiichi power plant. J. Geophys. Res., 117, D05122, https://doi.org/10.1029/2011JD016932.
Winiarek, V., M. Bocquet, N. Duhanyan, Y. Roustan, O. Saunier, and A. Mathieu, 2014: Estimation of the caesium-137 source term from the Fukushima Daiichi nuclear power plant using a consistent joint assimilation of air concentration and deposition observations. Atmos. Environ., 82, 268–279, https://doi.org/10.1016/j.atmosenv.2013.10.017.
Wu, C. F. J., 1983: On the convergence properties of the EM algorithm. Ann. Stat., 11, 95–103, https://doi.org/10.1214/aos/1176346060.
Yang, Y., and E. Mémin, 2019: Estimation of physical parameters under location uncertainty using an ensemble-expectation-maximization algorithm. Quart. J. Roy. Meteor. Soc., 145, 418–433, https://doi.org/10.1002/qj.3438.
Ying, Y., and F. Zhang, 2015: An adaptive covariance relaxation method for ensemble data assimilation. Quart. J. Roy. Meteor. Soc., 141, 2898–2906, https://doi.org/10.1002/qj.2576.
Zebiak, S. E., and M. A. Cane, 1987: A model El Niño–Southern Oscillation. Mon. Wea. Rev., 115, 2262–2278, https://doi.org/10.1175/1520-0493(1987)115<2262:AMENO>2.0.CO;2.
Zhang, F., C. Snyder, and J. Sun, 2004: Impacts of initial estimate and observation availability on convective-scale data assimilation with an ensemble Kalman filter. Mon. Wea. Rev., 132, 1238–1253, https://doi.org/10.1175/1520-0493(2004)132<1238:IOIEAO>2.0.CO;2.
Zhen, Y., and J. Harlim, 2015: Adaptive error covariances estimation methods for ensemble Kalman filters. J. Comput. Phys., 294, 619–638, https://doi.org/10.1016/j.jcp.2015.03.061.