A Review of Ice Particle Shapes in Cirrus formed In Situ and in Anvils

Journal of Geophysical Research D: Atmospheres - Tập 124 Số 17-18 - Trang 10049-10090 - 2019
R. Paul Lawson1, Sarah Woods1, E. J. Jensen2, Ehsan Erfani3,4, Colin Gurganus1, M. W. Gallagher5, Paul Connolly5, J. A. Whiteway6, Anthony J. Baran7,8, Peter T. May9, Andrew J. Heymsfield10, Carl Schmitt10, Greg M. McFarquhar11, Junshik Um12, Alain Protat9, Martin J. Bailey3, Sara Lance13, A. D. Muehlbauer14, Jeffrey L. Stith10, Alexei Korolev15, O. B. Toon16, Martina Krämer17
1Stratton Park Engineering Company, Inc. Boulder CO USA
2NASA Ames Research Center Moffett Field CA USA
3Desert Research Institute, Reno, NV, USA
4Now at Department of Atmospheric, Oceanic, and Earth Sciences George Mason University Fairfax VA USA
5University of Manchester, Manchester, UK
6Centre for Research in Earth and Space Science, York University, Toronto, Ontario, Canada
7Met Office, Exeter, UK
8School of Physics Astronomy and Mathematics, University of Hertfordshire, Hatfield, UK
9Australian Bureau of Meteorology, Melbourne, Victoria, Australia
10National Center for Atmospheric Research Boulder CO USA
11Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, Norman, OK USA
12Department of Atmospheric and Environmental Sciences Pusan National University Busan South Korea
13Atmospheric Sciences Research Center, University at Albany, Albany, NY, USA
14FM Global Research Norwood MA USA
15Environment Canada, Toronto, Ontario, Canada
16Department of Atmospheric and Oceanic Sciences and Laboratory for Atmospheric and Space Physics University of Colorado Boulder Boulder CO USA
17Institut für Energie und Klimaforschung Forschungszentrum Jülich Jülich Germany

Tóm tắt

AbstractResults from 22 airborne field campaigns, including more than 10 million high‐resolution particle images collected in cirrus formed in situ and in convective anvils, are interpreted in terms of particle shapes and their potential impact on radiative transfer. Emphasis is placed on characterizing ice particle shapes in tropical maritime and midlatitude continental anvil cirrus, as well as in cirrus formed in situ in the upper troposphere, and subvisible cirrus in the upper tropical troposphere layer. There is a distinctive difference in cirrus ice particle shapes formed in situ compared to those in anvils that are generated in close proximity to convection. More than half the mass in cirrus formed in situ are rosette shapes (polycrystals and bullet rosettes). Cirrus formed from fresh convective anvils is mostly devoid of rosette‐shaped particles. However, small frozen drops may experience regrowth downwind of an aged anvil in a regime with RHice > ~120% and then grow into rosette shapes. Identifiable particle shapes in tropical maritime anvils that have not been impacted by continental influences typically contain mostly single plate‐like and columnar crystals and aggregates. Midlatitude continental anvils contain single‐rimed particles, more and larger aggregates with riming, and chains of small ice particles when in a highly electrified environment. The particles in subvisible cirrus are < ~100 μm and quasi‐spherical with some plates and rare trigonal shapes. Percentages of particle shapes and power laws relating mean particle area and mass to dimension are provided to improve parameterization of remote retrievals and numerical simulations.

Từ khóa


Tài liệu tham khảo

10.1175/JAS‐D‐11‐035.1

10.1175/2009JAS2883.1

10.1175/JAS3802.1

10.1175/JAM2398.1

10.1016/j.atmosres.2012.04.010

10.1002/qj.731

10.1016/j.jqsrt.2009.02.021

10.1002/qj.2193

10.1016/S0169‐8095(01)00119‐3

10.1175/1520‐0426(1995)012<0410:IMOTIW>2.0.CO;2

10.1029/2006GL027403

10.1256/qj.03.217

10.1002/qj.2058

10.1175/2009JTECHA1282.1

10.1126/science.1234145

10.1029/2009JD013093

10.1002/2015JD023139

Diskin G. S. Podolske J.R. Sachse G. W. &Slate T. A.(2002).Open‐path airborne tunable diode laser hygrometer.Diode Lasers and Applications in Atmospheric Sensing A. Fried Ed. International Society for Optical Engineering. SPIE Proceedings 4817 196–204. doi:10.1117/12.453736

10.1175/1520‐0450(1990)029<0970:ASOTPP>2.0.CO;2

10.5194/acp‐16‐4379‐2016

10.1029/2011JD016451

10.1175/1520‐0469(2003)060<0544:AASOIC>2.0.CO;2

10.5194/acp‐2‐31‐2002

10.5194/acp‐12‐6609‐2012

10.1256/qj.03.138

10.5194/acp‐12‐503‐2012

10.1175/JTECH‐D‐17‐0202.1

10.1073/pnas.1610455113

10.1002/2017JD026460

10.1029/2018MS001484

10.1175/1520‐0469(1975)032<0799:CUGCAT>2.0.CO;2

10.1175/JAS‐D‐14‐0034.1

10.1175/1520‐0469(1986)043<0851:IPOIAC>2.0.CO;2

10.1175/1520‐0469(1986)043<2463:IPEITA>2.0.CO;2

10.1175/1520‐0469(2000)057<0916:CCTV>2.0.CO;2

10.1175/AMSMONOGRAPHS‐D‐16‐0010.1

10.1175/1520‐0469(2002)059<0003:AGAFDT>2.0.CO;2

10.1175/1520‐0469(1995)052<4302:RHATIO>2.0.CO;2

10.1175/2010jas3507.1

10.1073/pnas.1217104110

10.5194/acp‐9‐5519‐2009

10.5194/acp‐8‐1621‐2008

10.1175/BAMS‐D‐14‐00263.1

10.1002/2017JD026632

10.1002/2016GL069426

10.1029/2018JD028832

10.1175/1520‐0469(1989)046<3108:AOICIC>2.0.CO;2

10.1175/1520‐0450(1970)009<0086:TOAAAT>2.0.CO;2

10.1175/1520‐0469(1963)020<0029:TGBOSC>2.0.CO;2

10.1038/35020537

Korolev A. V.(2018).Personal Communication.

10.1175/JTECH‐D‐13‐00115.1

10.1029/1999GL900232

10.1175/1520‐0426(1998)015<1495:TNAHWL>2.0.CO;2

10.5194/acp‐16‐3463‐2016

10.5194/acp‐9‐3505‐2009

Lance S. Lawson P. Mo Q. Jensen E. &Muhlbauer A.(2013 March).SPARTICUS Cirrus particle sizes and habits. Poster presented at the DOE ASR Science Team Meeting Potomac Maryland.

10.1175/JAS‐D‐17‐0033.1

10.5194/amt‐4‐1361‐2011

10.2514/2.2268

10.1175/JAS3803.1

Lawson R. P. Baker B. A. &Pilson B. L.(2003).In‐situ measurements of microphysical properties of mid‐latitude and anvil cirrus and validation of satellite retrievals(pp. 707–710). Presented at the 30th International Symposium on Remote Sensing of Environment Honolulu Hawaii.

10.1029/2000JD900789

10.1175/JAM2421.1

10.1029/2009JD013017

10.1175/JTECH1927.1

10.5194/acp‐8‐1609‐2008

10.1175/JAS‐D‐14‐0274.1

10.1029/JC079i015p02185

10.1175/JCLI‐D‐17‐0426.1

10.5194/acp‐16‐5793‐2016

10.1175/3222.1

10.1175/JAS3627.1

10.1002/qj.49712253003

10.1029/2001JD001293

10.5194/acp‐9‐15‐2009

10.1175/BAMS‐89‐5‐629

10.1175/1520‐0469(2000)057<1841:TASTTC>2.0.CO;2

10.1175/1520‐0469(2002)059<2458:ANPOSS>2.0.CO;2

10.1029/96JD01155

10.1002/2013JD020602

10.5194/acp‐18‐17325‐2018

10.1029/2008GL033552

10.1002/2013JD020035

NCAR(2012).Description of the NCAR Community Atmosphere Model (CAM 5.0). National Center for Atmospheric Research Technical Note. NCAR/TN‐486 + STR

10.1175/2010JAMC2401.1

10.1126/science.1227004

10.1029/2011JD016832

10.1038/35013030

10.1175/1520‐0477(2001)082<1119:CAARCA>2.3.CO;2

10.2151/jmsj1965.53.2_121

10.1175/2009JAS3187.1

10.5194/acp‐9‐707‐2009

10.1175/JCLI‐3243.1

10.1175/1520‐0469(1990)047<1742:TROTMA>2.0.CO;2

10.5194/acp‐14‐1973‐2014

10.5194/acp‐16‐2243‐2016

10.1175/1520‐0450(2002)041<0097:MOOTC>2.0.CO;2

10.1175/2104.1

10.5194/amt‐8‐211‐2015

10.1175/JAM2501.1

10.1002/qj.378

10.5194/acp‐11‐3159‐2011

10.5194/acp‐15‐3933‐2015

10.5194/acp‐2018‐5

Weickmann H. K.(1947).Die Eisphase in der Atmosphäre. Dt. Wetterdienst in der US‐Zone.

10.1029/2004GL021201

10.5194/acp‐2018‐386

10.1029/2017JD028068

10.1175/JAS‐D‐12‐039.1

10.3390/atmos9120499

10.1007/s00376‐014‐0011‐z