A Review of Functional Binders in Lithium–Sulfur Batteries

Advanced Energy Materials - Tập 8 Số 31 - 2018
Hong Yuan1, Jia‐Qi Huang2, Hong‐Jie Peng1, Maria‐Magdalena Titirici3, Rong Xiang4, Renjie Chen5, Quanbing Liu6, Qiang Zhang1
1Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
2Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, China
3School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, E1 4NS London, UK
4Department of Mechanical Engineering, the University of Tokyo, Tokyo 113-8656, Japan
5Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
6School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China

Tóm tắt

AbstractLithium–sulfur (Li–S) batteries have received tremendous attention due to their superior theoretical energy density of 2600 Wh kg−1, as well as the abundance of sulfur resources and its environmental friendliness. Polymer binders as an indispensable component in cathodes play a critical role in maintaining the structural integrity and stability of electrodes. Additionally, multifunctional polymer binders have been involved in Li–S batteries to benefit electrochemical performance by mitigating the shuttle effect, facilitating the electron/ion transportation, and propelling the redox kinetics. In the context of the significant impact of binders on the performance of Li–S batteries, recent progress in research on polymer binders in sulfur cathodes is herein summarized. Focusing on the functions and effects of the polymer binders, the authors hope to shed light on the rational construction of robust and stable sulfur cathode for high‐energy‐density Li–S batteries. Perspectives regarding the future research opportunities in Li–S batteries are also discussed.

Từ khóa


Tài liệu tham khảo

10.1038/451652a

10.1126/science.1212741

10.1038/natrevmats.2016.91

10.1038/526S93a

10.1038/nenergy.2017.11

10.1038/nmat1368

10.1021/acsenergylett.7b00432

10.1021/acsenergylett.7b01022

10.1038/s41560-018-0108-1

10.1039/c1ee01598b

10.1002/advs.201500213

10.1038/d41586-018-05752-3

10.1002/advs.201500268

10.1021/acs.chemrev.7b00115

10.1002/adma.201606823

10.1021/cr500062v

10.1038/nenergy.2016.132

10.1002/anie.201304762

10.1002/smtd.201700134

10.1039/C5EE01388G

10.1002/adma.201705590

10.1002/adfm.201800154

10.1002/adfm.201801188

10.1002/adma.201601759

10.1002/aenm.201701185

10.1002/anie.201505444

10.1002/anie.201605676

10.1002/pola.28551

10.1002/aenm.201700260

10.1016/j.jpowsour.2018.05.096

10.1002/adma.201700542

10.1002/smtd.201700279

10.1016/0022-1902(77)80198-X

10.1002/smll.201702737

10.1039/C6CS00776G

10.1021/jp508137m

10.1149/1.1571532

10.1016/j.jallcom.2006.02.098

10.1002/adma.201603401

10.1149/1.1806394

10.1016/j.jpowsour.2014.02.075

10.1002/pen.760351202

10.1023/B:JMSC.0000007726.58758.e4

10.1021/la051721k

10.1039/C4RA15303K

10.1016/j.jpowsour.2016.04.114

10.5254/1.3535906

10.1021/acs.jpclett.7b02354

10.1016/j.electacta.2018.06.101

10.1149/1.2967191

10.1080/01694243.2012.727171

10.1016/j.electacta.2008.05.022

10.1016/j.elecom.2008.04.016

10.1149/1.3583375

10.1016/j.electacta.2009.02.039

10.1149/1.3299323

10.1016/j.electacta.2017.03.023

10.1039/b918727h

10.1016/j.elecom.2007.10.001

10.1016/j.jpowsour.2005.12.078

10.1021/jp2043416

10.1002/aenm.201402290

10.1016/j.electacta.2016.05.130

10.1002/adfm.201302631

10.1149/2.0611506jes

10.1002/aenm.201401986

10.1002/aenm.201500124

10.1002/aenm.201500118

10.1002/chem.201600040

10.1002/adfm.201705015

10.1002/aenm.201601630

10.1039/C6EE03033E

10.1007/s10800-016-0957-x

10.1039/C8TA01138A

10.1016/j.nanoen.2015.11.012

10.1002/adma.201601665

10.1002/aenm.201200017

10.1016/j.electacta.2017.02.160

10.1021/nl403130h

10.1002/aenm.201601193

10.1039/C8TA00205C

10.1039/C6TA10212C

10.1002/adfm.201401758

10.1557/jmr.2014.85

10.1149/2.0551803jes

10.1039/C6RA04230A

10.1016/j.nanoen.2015.05.036

10.1021/ja4054465

10.1002/adma.201102421

10.1039/c3sc51476e

10.1016/j.nanoen.2016.12.002

10.1016/j.ssi.2016.02.005

10.1016/j.jpowsour.2011.12.061

10.1016/j.jpowsour.2015.06.083

10.1021/acsami.8b01163

10.1039/c3cc44772c

10.1016/j.jpowsour.2016.01.045

10.1021/acs.nanolett.7b00417

10.1021/acs.nanolett.5b04166

10.1021/acs.nanolett.7b04425

10.1039/C5EE01809A

10.1016/j.jpowsour.2014.04.090

10.1039/C4TA04417G

10.1149/2.0161701jes

10.1149/2.009202eel

10.1039/C6RA16171E

10.1007/s11581-017-2087-9

10.1016/j.nanoen.2017.09.003

10.1002/mame.201700122

10.1016/j.elecom.2006.09.013

10.1002/adma.201605160

10.1021/acsnano.5b06373

10.1038/ncomms6002

10.1186/s11671-017-1948-5

10.1002/aenm.201702889

10.1038/am.2016.138

10.1039/C6RA20504F

10.1002/cssc.201700743

10.1016/j.nanoen.2017.05.020

10.1002/chem.201103535

10.1002/adma.201701294

10.1002/1521-4095(20020705)14:13/14<963::AID-ADMA963>3.0.CO;2-P

10.1021/jacs.5b08113

10.1038/nchem.1624

10.1021/mz400649w

10.1021/acs.nanolett.6b04610

10.1039/C7TA10239A

10.1021/acsami.5b08537

10.1021/acsami.7b06485

10.1021/acsenergylett.7b00779

10.1038/s41467-017-02410-6

10.1149/2.039208jes

10.1016/j.electacta.2017.10.194

10.1021/acs.chemmater.8b02357

10.1039/C7EE01047H

10.1038/s41467-018-03116-z

10.1002/adfm.201707536

10.1016/j.nanoen.2016.04.052

10.1021/acs.chemmater.6b03013

10.1021/acs.chemmater.7b03870

10.1021/acscentsci.7b00569

Wu Y.‐L., 2010, Acta Phys.‐Chim. Sin., 26, 283, 10.3866/PKU.WHXB20100205

10.1002/chem.201003523

10.1002/adfm.201201847

10.1039/C7TA00040E

10.1016/S2095-4956(13)60105-9

10.1039/C6CC07250J

10.1016/j.elecom.2016.09.004

10.1016/j.progpolymsci.2014.09.003

10.1021/acsenergylett.6b00104

10.1002/aenm.201500878