A Review of Feedforward Control Approaches in Nanopositioning for High-Speed SPM
Tóm tắt
Từ khóa
Tài liệu tham khảo
Binnig, Scanning Tunneling Microscopy, Helv. Phys. Acta, 55, 726
Vettiger, Special Issue on Nanotechnology–Preface, Microelectron. Eng., 31, 1
Gentili, Nanolithography: A Borderland Between STM, EB, IB and X-Ray Lithographies, 10.1007/978-94-015-8261-2
Whitesides, The Art of Building Small, Sci. Am., 285, 39
Kalinin, Effect of Phase Transition on the Surface Potential of the BaTiO3, J. Appl. Phys., 87, 3950, 10.1063/1.372440
Leang, Design of Hysteresis-Compensating Iterative Learning Control: Application to Atomic Force Microscopes, Mechatronics, 16, 141, 10.1016/j.mechatronics.2005.11.006
Bashash, A Polynomial-Based Linear Mapping Strategy for Feedforward Compensation of Hysteresis in Piezoelectric Actuators, ASME J. Dyn. Syst., Meas., Control, 130, 031008, 10.1115/1.2907372
Barrett, Optical Scan-Correction System Applied to Atomic Force Microscopy, Rev. Sci. Instrum., 62, 1393, 10.1063/1.1142506
Devasia, A Survey of Control Issues in Nanopositioning, IEEE Trans. Control Syst. Technol., 15, 802, 10.1109/TCST.2007.903345
Croft, Vibration Compensation for High Speed Scanning Tunneling Microscopy, Rev. Sci. Instrum., 70, 4600, 10.1063/1.1150119
Alexander, An Atomic-Resolution Atomic-Force Microscope Implemented Using an Optical Lever, J. Appl. Phys., 65, 164, 10.1063/1.342563
Pearce, Real-Time Imaging of Melting and Crystallization in Poly(Ethylene Oxide) by Atomic Force Microscopy, Polymer, 39, 1237, 10.1016/S0032-3861(97)00420-5
Li, Direct Observation of Growth of Lamellae and Spherulites of a Semicrystalline Polymer by AFM, Macromolecules, 34, 316, 10.1021/ma000273e
Beekmans, Crystal Melting and Its Kinetics on Poly(Ethylene Oxide) by In Situ Atomic Force Microscopy, Polymer, 43, 1887, 10.1016/S0032-3861(01)00748-0
Evans, Dynamic Strength of Molecular Adhesion Bonds, Biophys. J., 72, 1541, 10.1016/S0006-3495(97)78802-7
Wilder, Nanometer-Scale Patterning and Individual Current Controlled Lithography Using Multiple Scanning Probes, Rev. Sci. Instrum., 70, 2822, 10.1063/1.1149802
Minne, Automated Parallel High-Speed Atomic Force Microscopy, Appl. Phys. Lett., 72, 2340, 10.1063/1.121353
Lozanne, Direct Writing With a Combined STM/SEM System, Proceedings of NATO Advanced Workshop on Nanolithography: A Borderland between STM, EB, IB, and X-ray Lithographies, 159
Aizenberg, Control of Crystal Nucleation by Patterned Self-Assembled Monolayers, Nature (London), 398, 495, 10.1038/19047
Coffey, Patterning Phase Separation in Polymer Films With Dip-Pen Nanolithography, J. Am. Chem. Soc., 127, 4564, 10.1021/ja0428917
Chung, Top-Down Meets Bottom-Up: Dip-Pen Nanolithography and DNA-Directed Assembly of Nanoscale Electrical Circuits, Small, 1, 64, 10.1002/smll.200400005
Park, Enabling Nanotechnology With Self Assembled Block Copolymer Patterns, Polymer, 44, 6725, 10.1016/j.polymer.2003.08.011
Stark, Velocity Dependent Friction Laws in Contact Mode Atomic Force Microscopy, Ultramicroscopy, 100, 309, 10.1016/j.ultramic.2003.11.011
Tien, Iterative Control of Dynamics-Coupling-Caused Errors in Piezoscanners During High-Speed AFM Operation, IEEE Trans. Control Syst. Technol., 13, 921, 10.1109/TCST.2005.854334
Avouris, Atomic Force Microscope Tip-Induced Local Oxidation of Silicon: Kinetics, Mechanism, and Nanofabrication, Appl. Phys. Lett., 71, 285, 10.1063/1.119521
Dubois, Kinetics of Scanned Probe Oxidation: Space-Charge Limited Growth, J. Appl. Phys., 87, 8148, 10.1063/1.373510
Croft, Creep, Hysteresis, and Vibration Compensation for Piezoactuators: Atomic Force Microscopy Application, ASME J. Dyn. Syst., Meas., Control, 123, 35, 10.1115/1.1341197
Clayton, Inverse Feedforward of Charge Controlled Piezopositioners, Mechatronics, 18, 273, 10.1016/j.mechatronics.2007.07.006
Ashhab, Melnikov-Based Dynamical Analysis of Microcantilevers in Scanning Probe Microscopy, Nonlinear Dyn., 20, 197, 10.1023/A:1008342408448
El Rifai, In-Contact Dynamics of Atomic Force Microscopes, 1325
Basak, Hydrodynamic Loading of Microcantilevers Vibrating in Viscous Fluids, J. Appl. Phys., 99, 114906, 10.1063/1.2202232
El Rifai, Coupling in Piezoelectric Tube Scanners Used in Scanning Probe Microscopes, 3251
Salapaka, Sample-Profile Estimate for Fast Atomic Force Microscopy, Appl. Phys. Lett., 87, 053112, 10.1063/1.2006213
Shegaonkar, Feedback Based Simultaneous Correction of Imaging Artifacts Due to Geometrical and Mechanical Cross-Talk and Tip-Sample Stick in Atomic Force Microscopy, Rev. Sci. Instrum., 78, 103706, 10.1063/1.2800783
Li, Feedforward Control of a Closed-Loop Piezoelectric Translation Stage for Atomic Force Microscope, Rev. Sci. Instrum., 78, 013702, 10.1063/1.2403839
Barrett, High-Speed, Large-Scale Imaging With the Atomic Force Microscope, J. Vac. Sci. Technol. B, 9, 302, 10.1116/1.585610
Kuipers, Design and Performance of a High Temperature, High-Speed Scanning Tunneling Microscope, Rev. Sci. Instrum., 66, 4557, 10.1063/1.1145289
Nakakura, A High-Speed Variable-Temperature Ultrahigh Vacuum Scanning Tunneling Microscope, Rev. Sci. Instrum., 69, 3251, 10.1063/1.1149224
Schitter, Design and Modeling of a High-Speed AFM-Scanner, IEEE Trans. Control Syst. Technol., 15, 906, 10.1109/TCST.2007.902953
Ando, A High-Speed Atomic Force Microscope for Studying Biological Macromolecules, Proc. Natl. Acad. Sci. U.S.A., 98, 12468, 10.1073/pnas.211400898
Rost, Scanning Probe Microscopes Go Video Rate and Beyond, Rev. Sci. Instrum., 76, 053710, 10.1063/1.1915288
Shao, Biological Atomic Force Microscopy: What Is Achieved and What Is Needed, Adv. Phys., 45, 1, 10.1080/00018739600101467
Viani, Small Cantilevers for Force Spectroscopy of Single Molecules, J. Appl. Phys., 86, 2258, 10.1063/1.371039
Viani, Fast Imaging and Fast Force Spectroscopy of Single Biopolymers With a New Atomic Force Microscope Designed for Small Cantilever, Rev. Sci. Instrum., 70, 4300, 10.1063/1.1150069
Koops, New Scanning Device for Scanning Tunneling Microscope Applications, Rev. Sci. Instrum., 63, 4008, 10.1063/1.1143256
Sulchek, High-Speed Atomic Force Microscopy in Liquid, Rev. Sci. Instrum., 71, 2097, 10.1063/1.1150586
Chen, Electromechanical Deflections of Piezoelectric Tubes With Quartered Electrodes, Appl. Phys. Lett., 60, 132, 10.1063/1.107348
Humphris, A Mechanical Microscope: High-Speed Atomic Force Microscopy, Appl. Phys. Lett., 86, 034106, 10.1063/1.1855407
Picco, Breaking the Speed Limit With Atomic Force Microscopy, Nanotechnology, 18, 044030, 10.1088/0957-4484/18/4/044030
Uchihashi, Fast Phase Imaging in Liquids Using a Rapid Scan Atomic Force Microscope, Appl. Phys. Lett., 89, 213112, 10.1063/1.2387963
De Cupere, Nanoscale Organization of Collagen and Mixed Collagen-Pluronic Adsorbed Layers, Langmuir, 19, 6957, 10.1021/la030081n
Jiao, Accurate Height and Volume Measurements on Soft Samples With the Atomic Force Microscope, Langmuir, 20, 10038, 10.1021/la048650u
Dong, Time-Series Observation of the Spreading Out of Microvessel Endothelial Cells With Atomic Force Microscopy, Phys. Med. Biol., 48, 3897, 10.1088/0031-9155/48/23/007
Ushiki, Atomic Force Microscopy of Living Cells, Jpn. J. Appl. Phys., Part 1, 39, 3761, 10.1143/JJAP.39.3761
Salapaka, High Bandwidth Nano-Positioner: A Robust Control Approach, Rev. Sci. Instrum., 73, 3232, 10.1063/1.1499533
Ando, Development of Three-Dimensional Microstages Using Inclined Deep-Reactive Ion Etching, J. Microelectromech. Syst., 16, 613, 10.1109/JMEMS.2006.885848
Leang, High-Speed Serial-Kinematic AFM Scanner: Design and Drive Considerations, 3188
Li, Feedforward Control of a Piezoelectric Flexure Stage for AFM, 2703
Yong, Design, Identification, and Control of a Flexure-Based xy Stage for Fast Nanoscale Positioning, IEEE Trans. Nanotechnol., 8, 46, 10.1109/TNANO.2008.2005829
Schitter, Design and Input-Shaping Control of a Novel Scanner for High-Speed Atomic Force Microscopy, Mechatronics, 18, 282, 10.1016/j.mechatronics.2008.02.007
Perez, Design and Control of Optimal Scan-Trajectories: Scanning Tunneling Microscope Example, ASME J. Dyn. Syst., Meas., Control, 126, 187, 10.1115/1.1636770
Fleming, Optimal Input Signals for Bandlimited Scanning Systems, 11805
Mokaberi, Compensation of Scanner Creep and Hysteresis for AFM Nanomanipulation, IEEE Trans. Autom. Sci. Eng., 5, 197, 10.1109/TASE.2007.895008
Okazaki, A Micro-Positioning Tool Post Using a Piezoelectric Actuator for Diamond Turning Machines, Precis. Eng., 12, 151, 10.1016/0141-6359(90)90087-F
Leang, Hysteresis, Creep, and Vibration Compensation for Piezoactuators: Feedback and Feedforward Control, 283
Comstock, R. , 1981, “Charge Control of Piezoelectric Actuators to Reduce Hysteresis Effect,” U.S. Patent No. 4,263,527.
Newcomb, Improving the Linearity of Piezoelectric Ceramic Actuators, Electron. Lett., 18, 442, 10.1049/el:19820301
Fleming, A Grounded-Load Charge Amplifier for Reducing Hysteresis in Piezoelectric Tube Scanners, Rev. Sci. Instrum., 76, 073707, 10.1063/1.1938952
Fleming, Charge Drives for Scanning Probe Microscope Positioning Stages, Ultramicroscopy, 108, 1551, 10.1016/j.ultramic.2008.05.004
Sebastian, Design Methodologies for Robust Nano-Positioning, IEEE Trans. Control Syst. Technol., 13, 868, 10.1109/TCST.2005.854336
Tamer, Feedback Control of Piezoelectric Tube Scanners, 1826
Daniele, Piezoelectric Scanners for Atomic Force Microscopes: Design of Lateral Sensors, Identification and Control, 253
Schitter, High Performance Feedback for Fast Scanning Atomic Force Microscopy, Rev. Sci. Instrum., 72, 3320, 10.1063/1.1387253
Salapaka, Systems and Control Approaches to Nano-Interrogation: Unraveling New Temporal and Spatial Regimes
Pao, Combined Feedforward/Feedback Control of Atomic Force Microscopes, 3509
Butterworth, A Comparison of Control Architectures for Atomic Force Microscopes, 8236
Leang, Feedback-Linearized Inverse Feedforward for Creep, Hysteresis, and Vibration Compensation in AFM Piezoactuators, IEEE Trans. Control Syst. Technol., 15, 927, 10.1109/TCST.2007.902956
Aphale, High-Bandwidth Control of a Piezoelectric Nanopositioning Stage in the Presence of Plant Uncertainties, Nanotechnology, 19, 125503, 10.1088/0957-4484/19/12/125503
Zou, Control Issues in High-Speed AFM for Biological Applications: Collagen Imaging Example, Asian J. Control, 6, 164, 10.1111/j.1934-6093.2004.tb00195.x
Zhao, Feedforward Controllers and Tracking Accuracy in the Presence of Plant Uncertainties, ASME J. Dyn. Syst., Meas., Control, 117, 490, 10.1115/1.2801105
Schitter, Robust 2dof-Control of a Piezoelectric Tube Scanner for High-Speed Atomic Force Microscopy, 3720
Ying, Robust-Inversion-Based 2DOF-Control Design for Output Tracking: Piezoelectric Actuator Example, 2451
Morgan Matroc, Guide to Modern Piezoelectric Ceramics
Isidori, Nonlinear Control Systems: An Introduction
Clayton, Image-Based Control of Dynamic Effects in Scanning Tunneling Microscopes, Nanotechnology, 16, 809, 10.1088/0957-4484/16/6/032
Clayton, Iterative Image-Based Modeling and Control for Higher Scanning Probe Microscope Performance, Rev. Sci. Instrum., 78, 083704, 10.1063/1.2773534
Inoue, High Accuracy Control of a Proton Synchrotron Magnet Power Supply, 216
Tomizuka, Discrete Time Domain Analysis and Synthesis of Repetitive Controllers, 860
Francis, The Internal Model Principle of Control Theory, Automatica, 12, 457, 10.1016/0005-1098(76)90006-6
Aridogan, Discrete-Time Phase Compensated Repetitive Control for Piezoactuators in Scanning Probe Microscopes, 1325
Aridogan, U., Shan, Y., and Leang, K. K., 2009, “Design and Analysis of Discrete-Time Repetitive Control for Scanning Probe Microscopes,” ASME J. Dyn. Syst., Meas., Control0022-0434, in press.
Silverman, Inversion of Multivariable Linear Systems, IEEE Trans. Autom. Control, 14, 270, 10.1109/TAC.1969.1099169
Bayo, A Finite-Element Approach to Control the End-Point Motion of a Single-Link Flexible Robot, J. Rob. Syst., 4, 63, 10.1002/rob.4620040106
Kwon, A Time-Domain Inverse Dynamic Tracking Control of a Single-Link Flexible Manipulator, ASME J. Dyn. Syst., Meas., Control, 116, 193, 10.1115/1.2899210
Devasia, Nonlinear Inversion-Based Output Tracking, IEEE Trans. Autom. Control, 41, 930, 10.1109/9.508898
Zou, Preview-Based Stable-Inversion for Output Tracking, ASME J. Dyn. Syst., Meas., Control, 121, 625, 10.1115/1.2802526
Andersson, Tip Steering for Fast Imaging in AFM, 2469
Zou, Preview-Based Optimal Inversion for Output Tracking: Application to Scanning Tunneling Microscopy, IEEE Trans. Control Syst. Technol., 12, 375, 10.1109/TCST.2004.824797
Tomizuka, Optimal Discrete Finite Preview Problems (Why and How Is Future Information Important), ASME J. Dyn. Syst., Meas., Control, 109, 319
Zou, Optimal Preview-Based Stable-Inversion for Output Tracking of Nonminimum-Phase Linear Systems, Automatica, 45, 230, 10.1016/j.automatica.2008.06.014
Qui, Performance Limitations of Non-Minimum Phase Systems in the Servomechanism Problem, Automatica, 29, 337, 10.1016/0005-1098(93)90127-F
Francis, The Linear Multivariable Regulator Problem, SIAM J. Control Optim., 15, 486, 10.1137/0315033
Tomizuka, Zero Phase Error Tracking Control for Digital Control, ASME J. Dyn. Syst., Meas., Control, 109, 65, 10.1115/1.3143822
Gopalswamy, Tracking Nonlinear Non-Minimum Phase Systems Using Sliding Control, Int. J. Control, 57, 1141, 10.1080/00207179308934436
Devasia, Should Model-Based Inverse Inputs Be Used as Feedforward Under Plant Uncertainty?, IEEE Trans. Autom. Control, 47, 1865, 10.1109/TAC.2002.804478
Dewey, Experimental and Theoretical Results in Output-Trajectory Redesign for Flexible Structures, ASME J. Dyn. Syst., Meas., Control, 120, 456, 10.1115/1.2801486
Gupta, Frequency Shaped Cost Functionals: Extension of Linear-Quadratic-Gaussian Design Methods, J. Guid. Control, 3, 529, 10.2514/3.19722
Brinkerhoff, Output Tracking for Actuator Deficient/Redundant Systems: Multiple Piezoactuator Example, J. Guid. Control Dyn., 23, 370, 10.2514/2.4535
Schitter, Identification and Open-Loop Tracking Control of a Piezoelectric Tube Scanner for High-Speed Scanning-Probe Microscopy, IEEE Trans. Control Syst. Technol., 12, 449, 10.1109/TCST.2004.824290
Doyle, Feedback Control Theory
Arimoto, On the Optimal Stabilization of Nonlinear Systems, J. Rob. Syst., 1, 123, 10.1002/rob.4620010203
Craig, Adaptive Control of Manipulators Through Repeated Trials, 1566
Ghosh, Iterative Learning Control for Nonlinear Nonminimum Phase Plants, ASME J. Dyn. Syst., Meas., Control, 123, 21, 10.1115/1.1341200
Mishra, An Optimization-Based Approach for Design of Iterative Learning Controllers With Accelerated Rates of Convergence, 2427
Bristow, Monotonic Convergence of Iterative Learning Control for Uncertain Systems Using a Time-Varying Filter, IEEE Trans. Autom. Control, 53, 582, 10.1109/TAC.2007.914252
Tsao, Adaptive Zero Phase Error Tracking Algorithm for Digital Control, ASME J. Dyn. Syst., Meas., Control, 109, 349, 10.1115/1.3143866
Ghosh, A Pseudo-Inverse Based Iterative Learning Control, IEEE Trans. Autom. Control, 47, 831, 10.1109/TAC.2002.1000282
Schitter, Fast Contact-Mode Atomic Force Microscopy on Biological Specimen by Model-Based Control, Ultramicroscopy, 100, 253, 10.1016/j.ultramic.2003.11.008
Kim, Model-Less Inversion-Based Iterative Control for Output Tracking: Piezo Actuator Example, 2170
Wu, Iterative Control Approach to Compensate for Both the Hysteresis and the Dynamics Effects of Piezo Actuators, IEEE Trans. Control Syst. Technol., 15, 936, 10.1109/TCST.2007.899722
Atkeson, Robot Trajectory Learning Through Practice, 1737
Ghosh, A Pseudo-Inverse Based Iterative Learning Control for Nonlinear Plants With Disturbances, 10.1109/CDC.1999.833379
Iyer, Approximate Inversion of the Preisach Hysteresis Operator With Application to Control of Smart Actuators, IEEE Trans. Autom. Control, 50, 798, 10.1109/TAC.2005.849205
Ashley, Hysteresis Inverse Iterative Learning Control of Piezoactuators in AFM, 10.3182/20080706-5-KR-1001.01398
Kim, Iterative Control Approach to High-Speed Force-Distance Curve Measurement Using AFM: Time Dependent Response of PDMS, Ultramicroscopy, 108, 911, 10.1016/j.ultramic.2008.03.001
Kim, A New Approach to Scan-Trajectory Design and Track: AFM Force Measurement Example, ASME J. Dyn. Syst., Meas., Control, 130, 051005, 10.1115/1.2936841
Kassel, Combinatorial Chemistry and Mass Spectrometry in the 21st Century Discovery Laboratory, Chem. Rev. (Washington, D.C.), 101, 255, 10.1021/cr990085q
Szostak, Combinatorial Chemistry: Special Thematic Issue, Chem. Rev. (Washington, D.C.), 97, 347, 10.1021/cr9700080
Cawse, Experimental Strategies for Combinatorial and High-Throughput Materials Development, Acc. Chem. Res., 34, 213, 10.1021/ar000117s
Butt, Force Measurements With the Atomic Force Microscope: Technique, Interpretation and Applications, Surf. Sci. Rep., 59, 1, 10.1016/j.surfrep.2005.08.003
Xu, Broadband Measurement of Rate-Dependent Viscoelasticity at Nanoscale Using Scanning Probe Microscope: Poly(Dimethylsiloxane) Example, Appl. Phys. Lett., 93, 133103, 10.1063/1.2990759
Perez, Optimal Output Transitions for Linear Systems, Automatica, 39, 181, 10.1016/S0005-1098(02)00240-6
Iamratanakul, Minimum-Time/Energy, Output Transitions for Dual-Stage Systems, ASME J. Dyn. Syst., Meas., Control, 131, 024503, 10.1115/1.3072153
Lehenkari, Adapting Atomic Force Microscopy for Cell Biology, Ultramicroscopy, 82, 289, 10.1016/S0304-3991(99)00138-2
Abraham, The Actin-Based Nanomachine at the Leading Edge of Migrating Cells, Biophys. J., 77, 1721, 10.1016/S0006-3495(99)77018-9
Small, The Lamellipodium: Where Motility Begins, Trends Cell Biol., 12, 112, 10.1016/S0962-8924(01)02237-1
Mathur, Atomic Force and Total Internal Reflection Fluorescence Microscopy for the Study of Force Transmission in Endothelial Cells, Biophys. J., 78, 1725, 10.1016/S0006-3495(00)76724-5
Grimellec, Imaging of the Surface of Living Cells by Low-Force Contact-Mode Atomic Force Microscopy, Biophys. J., 75, 695, 10.1016/S0006-3495(98)77559-9
Prater, Atomic Force Microscopy of Biological Samples at Low Temperature, J. Vac. Sci. Technol. B, 9, 989, 10.1116/1.585442
Schitter, A New Control Strategy for High-Speed Atomic Force Microscopy, Nanotechnology, 15, 108, 10.1088/0957-4484/15/1/021
Tien, S. , July 2007, “High-Speed Nano-Precision Positioning: Theory and Application to AFM Imaging of Soft Samples,” Ph.D. thesis, University of Washington, Seattle, WA.
Tien, Rapid AFM Imaging of Large Soft Samples in Liquid With Small Forces, Asian J. Control, 11, 154, 10.1002/asjc.91
Lapshin, Automatic Lateral Calibration of Tunneling Microscope Scanners, Rev. Sci. Instrum., 69, 3268, 10.1063/1.1149091
Lapshin, Feature-Oriented Scanning Methodology for Probe Microscopy and Nanotechnology, Nanotechnology, 15, 1135, 10.1088/0957-4484/15/9/006