A Review of Feedforward Control Approaches in Nanopositioning for High-Speed SPM

Garrett M. Clayton1, S. Tien2, Kam K. Leang3, Qingze Zou4, Santosh Devasia5
1Department of Mechanical Engineering, Villanova University, Villanova, PA 19085
2Department of Mechanical Engineering, National Cheng Kung University, Tainan 701, Taiwan
3Department of Mechanical Engineering, University of Nevada, Reno, NV 89557
4Department of Mechanical Engineering, Iowa State University, Ames, IA 50011
5Department of Mechanical Engineering, University of Washington, Seattle, WA, 98195

Tóm tắt

Control can enable high-bandwidth nanopositioning needed to increase the operating speed of scanning probe microscopes (SPMs). High-speed SPMs can substantially impact the throughput of a wide range of emerging nanosciences and nanotechnologies. In particular, inversion-based control can find the feedforward input needed to account for the positioning dynamics and, thus, achieve the required precision and bandwidth. This article reviews inversion-based feedforward approaches used for high-speed SPMs such as optimal inversion that accounts for model uncertainty and inversion-based iterative control for repetitive applications. The article establishes connections to other existing methods such as zero-phase-error-tracking feedforward and robust feedforward. Additionally, the article reviews the use of feedforward in emerging applications such as SPM-based nanoscale combinatorial-science studies, image-based control for subnanometer-scale studies, and imaging of large soft biosamples with SPMs.

Từ khóa


Tài liệu tham khảo

Binnig, Scanning Tunneling Microscopy, Helv. Phys. Acta, 55, 726

Binnig, Atomic Force Microscope, Phys. Rev. Lett., 56, 930, 10.1103/PhysRevLett.56.930

Wiesendanger, Scanning Probe Microscopy and Spectroscopy, 10.1017/CBO9780511524356

Vettiger, Special Issue on Nanotechnology–Preface, Microelectron. Eng., 31, 1

Gentili, Nanolithography: A Borderland Between STM, EB, IB and X-Ray Lithographies, 10.1007/978-94-015-8261-2

Whitesides, The Art of Building Small, Sci. Am., 285, 39

Kalinin, Effect of Phase Transition on the Surface Potential of the BaTiO3, J. Appl. Phys., 87, 3950, 10.1063/1.372440

Leang, Design of Hysteresis-Compensating Iterative Learning Control: Application to Atomic Force Microscopes, Mechatronics, 16, 141, 10.1016/j.mechatronics.2005.11.006

Bashash, A Polynomial-Based Linear Mapping Strategy for Feedforward Compensation of Hysteresis in Piezoelectric Actuators, ASME J. Dyn. Syst., Meas., Control, 130, 031008, 10.1115/1.2907372

Barrett, Optical Scan-Correction System Applied to Atomic Force Microscopy, Rev. Sci. Instrum., 62, 1393, 10.1063/1.1142506

Devasia, A Survey of Control Issues in Nanopositioning, IEEE Trans. Control Syst. Technol., 15, 802, 10.1109/TCST.2007.903345

Croft, Vibration Compensation for High Speed Scanning Tunneling Microscopy, Rev. Sci. Instrum., 70, 4600, 10.1063/1.1150119

Alexander, An Atomic-Resolution Atomic-Force Microscope Implemented Using an Optical Lever, J. Appl. Phys., 65, 164, 10.1063/1.342563

Pearce, Real-Time Imaging of Melting and Crystallization in Poly(Ethylene Oxide) by Atomic Force Microscopy, Polymer, 39, 1237, 10.1016/S0032-3861(97)00420-5

Li, Direct Observation of Growth of Lamellae and Spherulites of a Semicrystalline Polymer by AFM, Macromolecules, 34, 316, 10.1021/ma000273e

Beekmans, Crystal Melting and Its Kinetics on Poly(Ethylene Oxide) by In Situ Atomic Force Microscopy, Polymer, 43, 1887, 10.1016/S0032-3861(01)00748-0

Evans, Dynamic Strength of Molecular Adhesion Bonds, Biophys. J., 72, 1541, 10.1016/S0006-3495(97)78802-7

Stipe, Single-Molecule Vibrational Spectroscopy, Science, 280, 1732, 10.1126/science.280.5370.1732

Wilder, Nanometer-Scale Patterning and Individual Current Controlled Lithography Using Multiple Scanning Probes, Rev. Sci. Instrum., 70, 2822, 10.1063/1.1149802

Minne, Automated Parallel High-Speed Atomic Force Microscopy, Appl. Phys. Lett., 72, 2340, 10.1063/1.121353

Lozanne, Direct Writing With a Combined STM/SEM System, Proceedings of NATO Advanced Workshop on Nanolithography: A Borderland between STM, EB, IB, and X-ray Lithographies, 159

Aizenberg, Control of Crystal Nucleation by Patterned Self-Assembled Monolayers, Nature (London), 398, 495, 10.1038/19047

Coffey, Patterning Phase Separation in Polymer Films With Dip-Pen Nanolithography, J. Am. Chem. Soc., 127, 4564, 10.1021/ja0428917

Chung, Top-Down Meets Bottom-Up: Dip-Pen Nanolithography and DNA-Directed Assembly of Nanoscale Electrical Circuits, Small, 1, 64, 10.1002/smll.200400005

Park, Enabling Nanotechnology With Self Assembled Block Copolymer Patterns, Polymer, 44, 6725, 10.1016/j.polymer.2003.08.011

Stark, Velocity Dependent Friction Laws in Contact Mode Atomic Force Microscopy, Ultramicroscopy, 100, 309, 10.1016/j.ultramic.2003.11.011

Tien, Iterative Control of Dynamics-Coupling-Caused Errors in Piezoscanners During High-Speed AFM Operation, IEEE Trans. Control Syst. Technol., 13, 921, 10.1109/TCST.2005.854334

Avouris, Atomic Force Microscope Tip-Induced Local Oxidation of Silicon: Kinetics, Mechanism, and Nanofabrication, Appl. Phys. Lett., 71, 285, 10.1063/1.119521

Dubois, Kinetics of Scanned Probe Oxidation: Space-Charge Limited Growth, J. Appl. Phys., 87, 8148, 10.1063/1.373510

Croft, Creep, Hysteresis, and Vibration Compensation for Piezoactuators: Atomic Force Microscopy Application, ASME J. Dyn. Syst., Meas., Control, 123, 35, 10.1115/1.1341197

Clayton, Inverse Feedforward of Charge Controlled Piezopositioners, Mechatronics, 18, 273, 10.1016/j.mechatronics.2007.07.006

Ashhab, Melnikov-Based Dynamical Analysis of Microcantilevers in Scanning Probe Microscopy, Nonlinear Dyn., 20, 197, 10.1023/A:1008342408448

El Rifai, In-Contact Dynamics of Atomic Force Microscopes, 1325

Basak, Hydrodynamic Loading of Microcantilevers Vibrating in Viscous Fluids, J. Appl. Phys., 99, 114906, 10.1063/1.2202232

El Rifai, Coupling in Piezoelectric Tube Scanners Used in Scanning Probe Microscopes, 3251

Salapaka, Sample-Profile Estimate for Fast Atomic Force Microscopy, Appl. Phys. Lett., 87, 053112, 10.1063/1.2006213

Shegaonkar, Feedback Based Simultaneous Correction of Imaging Artifacts Due to Geometrical and Mechanical Cross-Talk and Tip-Sample Stick in Atomic Force Microscopy, Rev. Sci. Instrum., 78, 103706, 10.1063/1.2800783

Li, Feedforward Control of a Closed-Loop Piezoelectric Translation Stage for Atomic Force Microscope, Rev. Sci. Instrum., 78, 013702, 10.1063/1.2403839

Barrett, High-Speed, Large-Scale Imaging With the Atomic Force Microscope, J. Vac. Sci. Technol. B, 9, 302, 10.1116/1.585610

Kuipers, Design and Performance of a High Temperature, High-Speed Scanning Tunneling Microscope, Rev. Sci. Instrum., 66, 4557, 10.1063/1.1145289

Nakakura, A High-Speed Variable-Temperature Ultrahigh Vacuum Scanning Tunneling Microscope, Rev. Sci. Instrum., 69, 3251, 10.1063/1.1149224

Schitter, Design and Modeling of a High-Speed AFM-Scanner, IEEE Trans. Control Syst. Technol., 15, 906, 10.1109/TCST.2007.902953

Ando, A High-Speed Atomic Force Microscope for Studying Biological Macromolecules, Proc. Natl. Acad. Sci. U.S.A., 98, 12468, 10.1073/pnas.211400898

Rost, Scanning Probe Microscopes Go Video Rate and Beyond, Rev. Sci. Instrum., 76, 053710, 10.1063/1.1915288

Shao, Biological Atomic Force Microscopy: What Is Achieved and What Is Needed, Adv. Phys., 45, 1, 10.1080/00018739600101467

Viani, Small Cantilevers for Force Spectroscopy of Single Molecules, J. Appl. Phys., 86, 2258, 10.1063/1.371039

Viani, Fast Imaging and Fast Force Spectroscopy of Single Biopolymers With a New Atomic Force Microscope Designed for Small Cantilever, Rev. Sci. Instrum., 70, 4300, 10.1063/1.1150069

Koops, New Scanning Device for Scanning Tunneling Microscope Applications, Rev. Sci. Instrum., 63, 4008, 10.1063/1.1143256

Sulchek, High-Speed Atomic Force Microscopy in Liquid, Rev. Sci. Instrum., 71, 2097, 10.1063/1.1150586

Chen, Electromechanical Deflections of Piezoelectric Tubes With Quartered Electrodes, Appl. Phys. Lett., 60, 132, 10.1063/1.107348

Humphris, A Mechanical Microscope: High-Speed Atomic Force Microscopy, Appl. Phys. Lett., 86, 034106, 10.1063/1.1855407

Picco, Breaking the Speed Limit With Atomic Force Microscopy, Nanotechnology, 18, 044030, 10.1088/0957-4484/18/4/044030

Uchihashi, Fast Phase Imaging in Liquids Using a Rapid Scan Atomic Force Microscope, Appl. Phys. Lett., 89, 213112, 10.1063/1.2387963

De Cupere, Nanoscale Organization of Collagen and Mixed Collagen-Pluronic Adsorbed Layers, Langmuir, 19, 6957, 10.1021/la030081n

Jiao, Accurate Height and Volume Measurements on Soft Samples With the Atomic Force Microscope, Langmuir, 20, 10038, 10.1021/la048650u

Dong, Time-Series Observation of the Spreading Out of Microvessel Endothelial Cells With Atomic Force Microscopy, Phys. Med. Biol., 48, 3897, 10.1088/0031-9155/48/23/007

Ushiki, Atomic Force Microscopy of Living Cells, Jpn. J. Appl. Phys., Part 1, 39, 3761, 10.1143/JJAP.39.3761

Salapaka, High Bandwidth Nano-Positioner: A Robust Control Approach, Rev. Sci. Instrum., 73, 3232, 10.1063/1.1499533

Ando, Development of Three-Dimensional Microstages Using Inclined Deep-Reactive Ion Etching, J. Microelectromech. Syst., 16, 613, 10.1109/JMEMS.2006.885848

Leang, High-Speed Serial-Kinematic AFM Scanner: Design and Drive Considerations, 3188

Li, Feedforward Control of a Piezoelectric Flexure Stage for AFM, 2703

Yong, Design, Identification, and Control of a Flexure-Based xy Stage for Fast Nanoscale Positioning, IEEE Trans. Nanotechnol., 8, 46, 10.1109/TNANO.2008.2005829

Schitter, Design and Input-Shaping Control of a Novel Scanner for High-Speed Atomic Force Microscopy, Mechatronics, 18, 282, 10.1016/j.mechatronics.2008.02.007

Perez, Design and Control of Optimal Scan-Trajectories: Scanning Tunneling Microscope Example, ASME J. Dyn. Syst., Meas., Control, 126, 187, 10.1115/1.1636770

Fleming, Optimal Input Signals for Bandlimited Scanning Systems, 11805

Mokaberi, Compensation of Scanner Creep and Hysteresis for AFM Nanomanipulation, IEEE Trans. Autom. Sci. Eng., 5, 197, 10.1109/TASE.2007.895008

Tan, Modeling and Control of Hysteresis, IEEE Control Syst. Mag., 29, 26, 10.1109/MCS.2008.930921

Okazaki, A Micro-Positioning Tool Post Using a Piezoelectric Actuator for Diamond Turning Machines, Precis. Eng., 12, 151, 10.1016/0141-6359(90)90087-F

Leang, Hysteresis, Creep, and Vibration Compensation for Piezoactuators: Feedback and Feedforward Control, 283

Comstock, R. , 1981, “Charge Control of Piezoelectric Actuators to Reduce Hysteresis Effect,” U.S. Patent No. 4,263,527.

Newcomb, Improving the Linearity of Piezoelectric Ceramic Actuators, Electron. Lett., 18, 442, 10.1049/el:19820301

Fleming, A Grounded-Load Charge Amplifier for Reducing Hysteresis in Piezoelectric Tube Scanners, Rev. Sci. Instrum., 76, 073707, 10.1063/1.1938952

Fleming, Charge Drives for Scanning Probe Microscope Positioning Stages, Ultramicroscopy, 108, 1551, 10.1016/j.ultramic.2008.05.004

Sebastian, Design Methodologies for Robust Nano-Positioning, IEEE Trans. Control Syst. Technol., 13, 868, 10.1109/TCST.2005.854336

Tamer, Feedback Control of Piezoelectric Tube Scanners, 1826

Daniele, Piezoelectric Scanners for Atomic Force Microscopes: Design of Lateral Sensors, Identification and Control, 253

Schitter, High Performance Feedback for Fast Scanning Atomic Force Microscopy, Rev. Sci. Instrum., 72, 3320, 10.1063/1.1387253

Salapaka, Systems and Control Approaches to Nano-Interrogation: Unraveling New Temporal and Spatial Regimes

Salapaka, Scanning Probe Microscopy, IEEE Control Syst. Mag., 28, 65, 10.1109/MCS.2007.914688

Pao, Combined Feedforward/Feedback Control of Atomic Force Microscopes, 3509

Butterworth, A Comparison of Control Architectures for Atomic Force Microscopes, 8236

Leang, Feedback-Linearized Inverse Feedforward for Creep, Hysteresis, and Vibration Compensation in AFM Piezoactuators, IEEE Trans. Control Syst. Technol., 15, 927, 10.1109/TCST.2007.902956

Aphale, High-Bandwidth Control of a Piezoelectric Nanopositioning Stage in the Presence of Plant Uncertainties, Nanotechnology, 19, 125503, 10.1088/0957-4484/19/12/125503

Zou, Control Issues in High-Speed AFM for Biological Applications: Collagen Imaging Example, Asian J. Control, 6, 164, 10.1111/j.1934-6093.2004.tb00195.x

Zhao, Feedforward Controllers and Tracking Accuracy in the Presence of Plant Uncertainties, ASME J. Dyn. Syst., Meas., Control, 117, 490, 10.1115/1.2801105

Schitter, Robust 2dof-Control of a Piezoelectric Tube Scanner for High-Speed Atomic Force Microscopy, 3720

Ying, Robust-Inversion-Based 2DOF-Control Design for Output Tracking: Piezoelectric Actuator Example, 2451

Morgan Matroc, Guide to Modern Piezoelectric Ceramics

Isidori, Nonlinear Control Systems: An Introduction

Clayton, Image-Based Control of Dynamic Effects in Scanning Tunneling Microscopes, Nanotechnology, 16, 809, 10.1088/0957-4484/16/6/032

Clayton, Iterative Image-Based Modeling and Control for Higher Scanning Probe Microscope Performance, Rev. Sci. Instrum., 78, 083704, 10.1063/1.2773534

Inoue, High Accuracy Control of a Proton Synchrotron Magnet Power Supply, 216

Tomizuka, Discrete Time Domain Analysis and Synthesis of Repetitive Controllers, 860

Ghosh, Nonlinear Repetitive Control, IEEE Trans. Autom. Control, 45, 949, 10.1109/9.855558

Francis, The Internal Model Principle of Control Theory, Automatica, 12, 457, 10.1016/0005-1098(76)90006-6

Aridogan, Discrete-Time Phase Compensated Repetitive Control for Piezoactuators in Scanning Probe Microscopes, 1325

Aridogan, U., Shan, Y., and Leang, K. K., 2009, “Design and Analysis of Discrete-Time Repetitive Control for Scanning Probe Microscopes,” ASME J. Dyn. Syst., Meas., Control0022-0434, in press.

Silverman, Inversion of Multivariable Linear Systems, IEEE Trans. Autom. Control, 14, 270, 10.1109/TAC.1969.1099169

Bayo, A Finite-Element Approach to Control the End-Point Motion of a Single-Link Flexible Robot, J. Rob. Syst., 4, 63, 10.1002/rob.4620040106

Kwon, A Time-Domain Inverse Dynamic Tracking Control of a Single-Link Flexible Manipulator, ASME J. Dyn. Syst., Meas., Control, 116, 193, 10.1115/1.2899210

Devasia, Nonlinear Inversion-Based Output Tracking, IEEE Trans. Autom. Control, 41, 930, 10.1109/9.508898

Zou, Preview-Based Stable-Inversion for Output Tracking, ASME J. Dyn. Syst., Meas., Control, 121, 625, 10.1115/1.2802526

Andersson, Tip Steering for Fast Imaging in AFM, 2469

Zou, Preview-Based Optimal Inversion for Output Tracking: Application to Scanning Tunneling Microscopy, IEEE Trans. Control Syst. Technol., 12, 375, 10.1109/TCST.2004.824797

Tomizuka, Optimal Discrete Finite Preview Problems (Why and How Is Future Information Important), ASME J. Dyn. Syst., Meas., Control, 109, 319

Zou, Optimal Preview-Based Stable-Inversion for Output Tracking of Nonminimum-Phase Linear Systems, Automatica, 45, 230, 10.1016/j.automatica.2008.06.014

Qui, Performance Limitations of Non-Minimum Phase Systems in the Servomechanism Problem, Automatica, 29, 337, 10.1016/0005-1098(93)90127-F

Francis, The Linear Multivariable Regulator Problem, SIAM J. Control Optim., 15, 486, 10.1137/0315033

Tomizuka, Zero Phase Error Tracking Control for Digital Control, ASME J. Dyn. Syst., Meas., Control, 109, 65, 10.1115/1.3143822

Gopalswamy, Tracking Nonlinear Non-Minimum Phase Systems Using Sliding Control, Int. J. Control, 57, 1141, 10.1080/00207179308934436

Devasia, Should Model-Based Inverse Inputs Be Used as Feedforward Under Plant Uncertainty?, IEEE Trans. Autom. Control, 47, 1865, 10.1109/TAC.2002.804478

Dewey, Experimental and Theoretical Results in Output-Trajectory Redesign for Flexible Structures, ASME J. Dyn. Syst., Meas., Control, 120, 456, 10.1115/1.2801486

Gupta, Frequency Shaped Cost Functionals: Extension of Linear-Quadratic-Gaussian Design Methods, J. Guid. Control, 3, 529, 10.2514/3.19722

Brinkerhoff, Output Tracking for Actuator Deficient/Redundant Systems: Multiple Piezoactuator Example, J. Guid. Control Dyn., 23, 370, 10.2514/2.4535

Schitter, Identification and Open-Loop Tracking Control of a Piezoelectric Tube Scanner for High-Speed Scanning-Probe Microscopy, IEEE Trans. Control Syst. Technol., 12, 449, 10.1109/TCST.2004.824290

Doyle, Feedback Control Theory

Arimoto, On the Optimal Stabilization of Nonlinear Systems, J. Rob. Syst., 1, 123, 10.1002/rob.4620010203

Craig, Adaptive Control of Manipulators Through Repeated Trials, 1566

Moore, Iterative Learning Control for Deterministic Systems, 10.1007/978-1-4471-1912-8

Ghosh, Iterative Learning Control for Nonlinear Nonminimum Phase Plants, ASME J. Dyn. Syst., Meas., Control, 123, 21, 10.1115/1.1341200

Mishra, An Optimization-Based Approach for Design of Iterative Learning Controllers With Accelerated Rates of Convergence, 2427

Bristow, Monotonic Convergence of Iterative Learning Control for Uncertain Systems Using a Time-Varying Filter, IEEE Trans. Autom. Control, 53, 582, 10.1109/TAC.2007.914252

Tsao, Adaptive Zero Phase Error Tracking Algorithm for Digital Control, ASME J. Dyn. Syst., Meas., Control, 109, 349, 10.1115/1.3143866

Ghosh, A Pseudo-Inverse Based Iterative Learning Control, IEEE Trans. Autom. Control, 47, 831, 10.1109/TAC.2002.1000282

Schitter, Fast Contact-Mode Atomic Force Microscopy on Biological Specimen by Model-Based Control, Ultramicroscopy, 100, 253, 10.1016/j.ultramic.2003.11.008

Kim, Model-Less Inversion-Based Iterative Control for Output Tracking: Piezo Actuator Example, 2170

Wu, Iterative Control Approach to Compensate for Both the Hysteresis and the Dynamics Effects of Piezo Actuators, IEEE Trans. Control Syst. Technol., 15, 936, 10.1109/TCST.2007.899722

Atkeson, Robot Trajectory Learning Through Practice, 1737

Ghosh, A Pseudo-Inverse Based Iterative Learning Control for Nonlinear Plants With Disturbances, 10.1109/CDC.1999.833379

Iyer, Approximate Inversion of the Preisach Hysteresis Operator With Application to Control of Smart Actuators, IEEE Trans. Autom. Control, 50, 798, 10.1109/TAC.2005.849205

Ashley, Hysteresis Inverse Iterative Learning Control of Piezoactuators in AFM, 10.3182/20080706-5-KR-1001.01398

Kim, Iterative Control Approach to High-Speed Force-Distance Curve Measurement Using AFM: Time Dependent Response of PDMS, Ultramicroscopy, 108, 911, 10.1016/j.ultramic.2008.03.001

Kim, A New Approach to Scan-Trajectory Design and Track: AFM Force Measurement Example, ASME J. Dyn. Syst., Meas., Control, 130, 051005, 10.1115/1.2936841

Kassel, Combinatorial Chemistry and Mass Spectrometry in the 21st Century Discovery Laboratory, Chem. Rev. (Washington, D.C.), 101, 255, 10.1021/cr990085q

Szostak, Combinatorial Chemistry: Special Thematic Issue, Chem. Rev. (Washington, D.C.), 97, 347, 10.1021/cr9700080

Cawse, Experimental Strategies for Combinatorial and High-Throughput Materials Development, Acc. Chem. Res., 34, 213, 10.1021/ar000117s

Butt, Force Measurements With the Atomic Force Microscope: Technique, Interpretation and Applications, Surf. Sci. Rep., 59, 1, 10.1016/j.surfrep.2005.08.003

Xu, Broadband Measurement of Rate-Dependent Viscoelasticity at Nanoscale Using Scanning Probe Microscope: Poly(Dimethylsiloxane) Example, Appl. Phys. Lett., 93, 133103, 10.1063/1.2990759

Perez, Optimal Output Transitions for Linear Systems, Automatica, 39, 181, 10.1016/S0005-1098(02)00240-6

Iamratanakul, Minimum-Time/Energy, Output Transitions for Dual-Stage Systems, ASME J. Dyn. Syst., Meas., Control, 131, 024503, 10.1115/1.3072153

Lehenkari, Adapting Atomic Force Microscopy for Cell Biology, Ultramicroscopy, 82, 289, 10.1016/S0304-3991(99)00138-2

Abraham, The Actin-Based Nanomachine at the Leading Edge of Migrating Cells, Biophys. J., 77, 1721, 10.1016/S0006-3495(99)77018-9

Small, The Lamellipodium: Where Motility Begins, Trends Cell Biol., 12, 112, 10.1016/S0962-8924(01)02237-1

Mathur, Atomic Force and Total Internal Reflection Fluorescence Microscopy for the Study of Force Transmission in Endothelial Cells, Biophys. J., 78, 1725, 10.1016/S0006-3495(00)76724-5

Grimellec, Imaging of the Surface of Living Cells by Low-Force Contact-Mode Atomic Force Microscopy, Biophys. J., 75, 695, 10.1016/S0006-3495(98)77559-9

Prater, Atomic Force Microscopy of Biological Samples at Low Temperature, J. Vac. Sci. Technol. B, 9, 989, 10.1116/1.585442

Schitter, A New Control Strategy for High-Speed Atomic Force Microscopy, Nanotechnology, 15, 108, 10.1088/0957-4484/15/1/021

Tien, S. , July 2007, “High-Speed Nano-Precision Positioning: Theory and Application to AFM Imaging of Soft Samples,” Ph.D. thesis, University of Washington, Seattle, WA.

Tien, Rapid AFM Imaging of Large Soft Samples in Liquid With Small Forces, Asian J. Control, 11, 154, 10.1002/asjc.91

Fraden, AIP Handbook of Modern Sensors: Physics Designs and Applications, 10.1063/1.2808535

Lapshin, Automatic Lateral Calibration of Tunneling Microscope Scanners, Rev. Sci. Instrum., 69, 3268, 10.1063/1.1149091

Lapshin, Feature-Oriented Scanning Methodology for Probe Microscopy and Nanotechnology, Nanotechnology, 15, 1135, 10.1088/0957-4484/15/9/006

Cunningham, Active Vibration Control and Actuation of a Small Cantilever for Applications in Scanning Probe Instruments, Sens. Actuators, A, 50, 147, 10.1016/0924-4247(96)80099-9