Hướng Dẫn Thực Hành về Chụp Hình Toàn Dải: Báo Cáo Trắng Từ Hiệp Hội Giải Phẫu Bệnh Kỹ Thuật Số

Archives of Pathology and Laboratory Medicine - Tập 143 Số 2 - Trang 222-234 - 2019
Mark D. Zarella1,2,3,4,5,6,7,8, Douglas Bowman1,2,3,4,5,6,7,8, Famke Aeffner1,2,3,4,5,6,7,8, Navid Farahani1,2,3,4,5,6,7,8, Albert Xthona1,2,3,4,5,6,7,8, Syeda Fatima Absar1,2,3,4,5,6,7,8, Anil V. Parwani1,2,3,4,5,6,7,8, Marilyn M. Bui1,2,3,4,5,6,7,8, Douglas J. Hartman1,2,3,4,5,6,7,8
13Scan, San Francisco, California (Dr Farahani)
2Barco, Inc, Beaverton, Oregon (Mr Xthona)
3Comparative Biology and Safety Sciences, Amgen, Inc, South San Francisco, California (Dr Aeffner)
4From the Department of Pathology & Laboratory Medicine, Drexel University College of Medicine, Philadelphia, Pennsylvania (Drs Zarella and Absar); Pharma Services, Indica Labs, Inc, Corrales, New Mexico (Mr Bowman); Comparative Biology and Safety Sciences, Amgen, Inc, South San Francisco, California (Dr Aeffner); 3Scan, San Francisco, California (Dr Farahani); Barco, Inc, Beaverton, Oregon (Mr Xt
5Pharma Services, Indica Labs, Inc, Corrales, New Mexico (Mr Bowman)
6the Department of Anatomic Pathology, H. Lee Moffitt Cancer Center, Tampa, Florida (Dr Bui)
7the Department of Pathology, The Ohio State University, Columbus (Dr Parwani)
8the Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania (Dr Hartman).

Tóm tắt

Bối cảnh.—

Chụp hình toàn dải (WSI) đại diện cho một bước chuyển mình trong ngành giải phẫu bệnh, phục vụ như một bước đầu cần thiết cho một loạt công cụ kỹ thuật số gia nhập lĩnh vực này. Chức năng cơ bản của nó là số hóa các mẫu bệnh phẩm trên kính, nhưng tác động của nó đối với quy trình làm việc trong giải phẫu bệnh, khả năng tái lập, việc phổ biến tài liệu giáo dục, mở rộng dịch vụ tới các khu vực khó khăn và sự hợp tác giữa các tổ chức nội bộ và giữa các tổ chức thể hiện một chuyển động đổi mới quan trọng với những tác động rộng rãi. Mặc dù những lợi ích của WSI đối với các thực tiễn giải phẫu bệnh, các trung tâm học thuật và các tổ chức nghiên cứu là rất nhiều, nhưng những phức tạp trong việc triển khai vẫn là một rào cản đối với việc áp dụng rộng rãi. Sau khi được cấp phép quản lý đầu tiên cho chẩn đoán chính ở Hoa Kỳ, một số rào cản trong việc áp dụng đã được gỡ bỏ. Tuy nhiên, việc triển khai WSI vẫn là một triển vọng khó khăn cho nhiều tổ chức, đặc biệt là những tổ chức có các bên liên quan không quen thuộc với các công nghệ cần thiết để triển khai một hệ thống hoặc không thể truyền đạt hiệu quả với lãnh đạo điều hành và các nhà tài trợ những lợi ích của một công nghệ có thể thiếu cơ hội hoàn trả rõ ràng và ngay lập tức.

Mục tiêu.—

Trình bày tổng quan về công nghệ WSI - hiện tại và tương lai - và minh chứng cho một số ứng dụng ngay lập tức của WSI hỗ trợ thực hành giải phẫu bệnh, giáo dục y tế, nghiên cứu và hợp tác.

Nguồn dữ liệu.—

Tài liệu được đánh giá đồng nghiệp đã được các bác sĩ giải phẫu, các nhà khoa học và kỹ thuật viên có kiến thức thực tiễn và kinh nghiệm với WSI xem xét.

Kết luận.—

Việc triển khai WSI là một nỗ lực đa diện và có tính đa ngành, đòi hỏi sự đóng góp từ các bác sĩ giải phẫu, kỹ thuật viên và lãnh đạo điều hành. Nâng cao hiểu biết về những thách thức hiện tại trong việc triển khai, cũng như những lợi ích và thành công của công nghệ, có thể giúp người sử dụng tiềm năng xác định con đường tốt nhất để đạt được thành công.

Từ khóa


Tài liệu tham khảo

Abels, 2017, Current state of the regulatory trajectory for whole slide imaging devices in the USA, J Pathol Inform, 8, 23, 10.4103/jpi.jpi_11_17

Ho, 2006, Use of whole slide imaging in surgical pathology quality assurance: design and pilot validation studies, Hum Pathol, 37, 322, 10.1016/j.humpath.2005.11.005

Pantanowitz, 2010, Digital images and the future of digital pathology, J Pathol Inform, 1, 15, 10.4103/2153-3539.68332

Farahani, 2015, Whole slide imaging in pathology: advantages, limitations, and emerging perspectives, Pathol Lab Med Int, 23

Pantanowitz, 2013, Validating whole slide imaging for diagnostic purposes in pathology: guideline from the College of American Pathologists Pathology and Laboratory Quality Center, Arch Pathol Lab Med, 137, 1710, 10.5858/arpa.2013-0093-CP

Bueno, 2014, An automated system for whole microscopic image acquisition and analysis, Microsc Res Tech, 77, 697, 10.1002/jemt.22391

Farris, 2017, Whole slide imaging for analytical anatomic pathology and telepathology: practical applications today, promises, and perils, Arch Pathol Lab Med, 141, 542, 10.5858/arpa.2016-0265-SA

Wilbur, 2016, Digital pathology and its role in cytology education, Cytopathology, 27, 325, 10.1111/cyt.12377

Indu, 2016, “Slide less pathology”: fairy tale or reality?, J Oral Maxillofac Pathol, 20, 284, 10.4103/0973-029X.185921

Hamilton, 2014, Digital pathology and image analysis in tissue biomarker research, Methods, 70, 59, 10.1016/j.ymeth.2014.06.015

Ghaznavi, 2013, Digital imaging in pathology: whole-slide imaging and beyond, Annu Rev Pathol, 8, 331, 10.1146/annurev-pathol-011811-120902

Feng, 2015, Multispectral imaging of formalin-fixed tissue predicts ability to generate tumor-infiltrating lymphocytes from melanoma, J Immunother Cancer, 3, 47, 10.1186/s40425-015-0091-z

Montalto, 2011, Autofocus methods of whole slide imaging systems and the introduction of a second-generation independent dual sensor scanning method, J Pathol Inform, 2, 44, 10.4103/2153-3539.86282

Higgins, 2015, Applications and challenges of digital pathology and whole slide imaging, Biotech Histochem, 90, 341, 10.3109/10520295.2015.1044566

Al-Janabi, 2012, Digital pathology: current status and future perspectives, Histopathology, 61, 1, 10.1111/j.1365-2559.2011.03814.x

Laurent, 2013, Whole-slide imaging is a robust alternative to traditional fluorescent microscopy for fluorescence in situ hybridization imaging using break-apart DNA probes, Hum Pathol, 44, 1544, 10.1016/j.humpath.2012.12.009

Bertram, 2017, The pathologist 2.0: an update on digital pathology in veterinary medicine, Vet Pathol, 54, 756, 10.1177/0300985817709888

Neil, 2014, Digital pathology services in acute surgical situations, Br J Surg, 101, 1185, 10.1002/bjs.9576

Sellaro, 2013, Relationship between magnification and resolution in digital pathology systems, J Pathol Inform, 4, 21, 10.4103/2153-3539.116866

Griffin, 2017, Digital pathology in clinical use: where are we now and what is holding us back?, Histopathology, 70, 134, 10.1111/his.12993

Aeffner, 2016, Commentary: roles for pathologists in a high-throughput image analysis team, Toxicol Pathol, 44, 825, 10.1177/0192623316653492

Johnson, 2009, Visually lossless compression of breast biopsy virtual slides for telepathology, Proceedings from SPIE 7263, Medical Imaging 2009: Image Perception, Observer Performance, and Technology Assessment

Krupinski, 2012, Compressing pathology whole-slide images using a human and model observer evaluation, J Pathol Inform, 3, 17, 10.4103/2153-3539.95129

2018, OpenSlide

Schneider, 2012, NIH Image to ImageJ: 25 years of image analysis, Nat Methods, 9, 671, 10.1038/nmeth.2089

Schindelin, 2012, Fiji: an open-source platform for biological-image analysis, Nat Methods, 9, 676, 10.1038/nmeth.2019

Bankhead, 2017, QuPath: open source software for digital pathology image analysis, Sci Rep, 7, 16878, 10.1038/s41598-017-17204-5

Goode, 2013, OpenSlide: a vendor-neutral software foundation for digital pathology, J Pathol Inform, 4, 27, 10.4103/2153-3539.119005

Linkert, 2010, Metadata matters: access to image data in the real world, J Cell Biol, 189, 777, 10.1083/jcb.201004104

Avanaki, 2015, Aging display's effect on interpretation of digital pathology slide, Proceedings from SPIE Medical Imaging 2015: Digital Pathology

Badano, 2015, Consistency and standardization of color in medical imaging: a consensus report, J Digit Imaging, 28, 41, 10.1007/s10278-014-9721-0

Yagi, 2011, Color standardization and optimization in whole slide imaging, Diagn Pathol, 6, S15, 10.1186/1746-1596-6-S1-S15

Shrestha, 2014, Color accuracy and reproducibility in whole slide imaging scanners, J Med Imaging (Bellingham), 1, 027501, 10.1117/1.JMI.1.2.027501

Kimpe, 2016, Color standard display function: a proposed extension of DICOM GSDF, Med Phys, 43, 5009, 10.1118/1.4959544

Mantiuk, 2005, Predicting visible differences in high dynamic range images: model and its calibration, Proceedings SPIE: Human Vision and Electronic Imaging X, 10.1117/12.586757

Kimpe, 2014, Does the choice of display system influence perception and visibility of clinically relevant features in digital pathology images?, Proceedings SPIE Medical Imaging 2014: Digital Pathology

Gabril, 2010, Informatics for practicing anatomical pathologists: marking a new era in pathology practice, Mod Pathol, 23, 349, 10.1038/modpathol.2009.190

Huisman, 2010, Creation of a fully digital pathology slide archive by high-volume tissue slide scanning, Hum Pathol, 41, 751, 10.1016/j.humpath.2009.08.026

Leong, 2004, Digital imaging in pathology: theoretical and practical considerations, and applications, Pathology, 36, 234, 10.1080/00313020410001692576

Boyce, 2015, Whole slide imaging: uses and limitations for surgical pathology and teaching, Biotech Histochem, 90, 321, 10.3109/10520295.2015.1033463

Pantanowitz, 2011, Review of the current state of whole slide imaging in pathology, J Pathol Inform, 2, 36, 10.4103/2153-3539.83746

Ghosh, 2018, Telepathology at the armed forces institute of pathology: a retrospective review of consultations from 1996 to 1997, Arch Pathol Lab Med, 142, 248, 10.5858/arpa.2017-0055-OA

Horbinski, 2007, Telepathology for intraoperative neuropathologic consultations at an academic medical center: a 5-year report, J Neuropathol Exp Neurol, 66, 750, 10.1097/nen.0b013e318126c179

Vitkovski, 2015, Utility of telepathology as a consultation tool between an off-site surgical pathology suite and affiliated hospitals in the frozen section diagnosis of lung neoplasms, J Pathol Inform, 6, 55, 10.4103/2153-3539.168515

Zhao, 2015, International telepathology consultation: three years of experience between the University of Pittsburgh Medical Center and KingMed Diagnostics in China, J Pathol Inform, 6, 63, 10.4103/2153-3539.170650

The University of California, 2018, UCLA health at the forefront of international telepathology

Evans, 2015, 2014 American Telemedicine Association clinical guidelines for telepathology: another important step in support of increased adoption of telepathology for patient care, J Pathol Inform, 6, 13, 10.4103/2153-3539.153906

Hartman, 2017, Enterprise implementation of digital pathology: feasibility, challenges, and opportunities, J Digit Imaging, 30, 555, 10.1007/s10278-017-9946-9

Chen, 2014, Web-based oil immersion whole slide imaging increases efficiency and clinical team satisfaction in hematopathology tumor board, J Pathol Inform, 5, 41, 10.4103/2153-3539.143336

Pantanowitz, 2012, Whole slide imaging for educational purposes, J Pathol Inform, 3, 46, 10.4103/2153-3539.104908

Saco, 2016, Current status of whole-slide imaging in education, Pathobiology, 83, 79, 10.1159/000442391

Bruch, 2009, Competency assessment of residents in surgical pathology using virtual microscopy, Hum Pathol, 40, 1122, 10.1016/j.humpath.2009.04.009

The American Board of Pathology, 2018, Anatomic pathology description of examination

Digital Pathology Association, 2018, Digital Pathology Association whole-slide image repository

Yin, 2016, Educational value of digital whole slides accompanying published online pathology journal articles: a multi-institutional study, Arch Pathol Lab Med, 140, 694, 10.5858/arpa.2015-0366-OA

Glassy E. Color Atlas of Hematology: An Illustrated Field Guide Based on Proficiency Testing. 2nd ed. Northfield, IL: College of American Pathologists;2018.

Hartman, 2015, Mobile technologies for the surgical pathologist, Surg Pathol Clin, 8, 233, 10.1016/j.path.2015.02.007

Kayser, 2011, E-education in pathology including certification of e-institutions, Diagn Pathol, 6, S11, 10.1186/1746-1596-6-S1-S11

Bethmann, 2017, Immunoprofiling as a predictor of patient's response to cancer therapy—promises and challenges, Curr Opin Immunol, 45, 60, 10.1016/j.coi.2017.01.005

Tumeh, 2014, PD-1 blockade induces responses by inhibiting adaptive immune resistance, Nature, 515, 568, 10.1038/nature13954

Evans, 2018], US Food and Drug administration approval of whole slide imaging for primary diagnosis: a key milestone is reached and new questions are raised, Arch Pathol Lab Med, 10.5858/arpa.2017-0496-CP

Friedman, 1997, Orchestrating a unified approach to information management, Radiol Manage, 19, 30

Farahani, 2017, Three-dimensional imaging and scanning: current and future applications for pathology, J Pathol Inform, 8, 36, 10.4103/jpi.jpi_32_17

Kong, 2013, Machine-based morphologic analysis of glioblastoma using whole-slide pathology images uncovers clinically relevant molecular correlates, PLoS One, 8, e81049, 10.1371/journal.pone.0081049

Tanaka, 2017, Whole-tissue biopsy phenotyping of three-dimensional tumours reveals patterns of cancer heterogeneity, Nat Biomed Eng, 1, 796, 10.1038/s41551-017-0139-0

Fonyad, 2015, 3-dimensional digital reconstruction of the murine coronary system for the evaluation of chronic allograft vasculopathy, Diagn Pathol, 10, 16, 10.1186/s13000-015-0248-6

Goubran, 2015, Registration of in-vivo to ex-vivo MRI of surgically resected specimens: a pipeline for histology to in-vivo registration, J Neurosci Methods, 241, 53, 10.1016/j.jneumeth.2014.12.005

Ohnishi, 2016, Deformable image registration between pathological images and MR image via an optical macro image, Pathol Res Pract, 212, 927, 10.1016/j.prp.2016.07.018

Sengle, 2013, A correlative method for imaging identical regions of samples by micro-CT, light microscopy, and electron microscopy: imaging adipose tissue in a model system, J Histochem Cytochem, 61, 263, 10.1369/0022155412473757

Nakamura, 2014, Registration between pathological image and MR image for comparing different modality images of brain tumor, Anal Cell Pathol, 2014, 1, 10.1155/2014/430762

Onozato, 2013, Evaluation of a completely automated tissue-sectioning machine for paraffin blocks, J Clin Pathol, 66, 151, 10.1136/jclinpath-2011-200205

Senter-Zapata, 2016, The role of micro-CT in 3D histology imaging, Pathobiology, 83, 140, 10.1159/000442387

Mansfield, 2014, Multispectral imaging: a review of its technical aspects and applications in anatomic pathology, Vet Pathol, 51, 185, 10.1177/0300985813506918

Levenson, 2006, Multispectral imaging in biology and medicine: slices of life, Cytometry A, 69, 748, 10.1002/cyto.a.20319

Levenson, 2006, Spectral imaging perspective on cytomics, Cytometry A, 69, 592, 10.1002/cyto.a.20292

Levenson, 2008, Multispectral imaging and pathology: seeing and doing more, Expert Opin Med Diagn, 2, 1067, 10.1517/17530059.2.9.1067

Cukierski, 2009, Moving beyond color: the case for multispectral imaging in brightfield pathology, Proc IEEE Int Symp Biomed Imaging, 5193251, 1111

Zarella, 2015, An optimized color transformation for the analysis of digital images of hematoxylin & eosin stained slides, J Pathol Inform, 6, 33, 10.4103/2153-3539.158910

Khouj, 2018, Hyperspectral imaging and K-means classification for histologic evaluation of ductal carcinoma in situ, Front Oncol, 8, 17, 10.3389/fonc.2018.00017

Ou-Yang, 2015, Biopsy diagnosis of oral carcinoma by the combination of morphological and spectral methods based on embedded relay lens microscopic hyperspectral imaging system, J Med Biol Eng, 35, 437, 10.1007/s40846-015-0052-5

Alfano, 2006, Hyperspectral microscopic analysis of normal, benign and carcinoma microarray tissue sections, Proceedings SPIE: Optical Biopsy VI

Liao, 2018, Dual light-emitting diode-based multichannel microscopy for whole-slide multiplane, multispectral and phase imaging, J Biophotonics, 11, e201700075, 10.1002/jbio.201700075

Hagen, 2012, Snapshot advantage: a review of the light collection improvement for parallel high-dimensional measurement systems, Opt Eng, 51, 10.1117/1.OE.51.11.111702

Singh, 2011, Standardization in digital pathology: supplement 145 of the DICOM standards, J Pathol Inform, 2, 23, 10.4103/2153-3539.80719

Clunie, 2018, Digital imaging and communications in medicine whole slide imaging Connectathon at Digital Pathology Association Pathology Visions 2017, J Pathol Inform, 9, 6, 10.4103/jpi.jpi_1_18

Henson, 1989, End points and significance of reproducibility in pathology, Arch Pathol Lab Med, 113, 830

Aeffner, 2017, The gold standard paradox in digital image analysis: manual versus automated scoring as ground truth, Arch Pathol Lab Med, 141, 1267, 10.5858/arpa.2016-0386-RA

Zarella, 2017, A template matching model for nuclear segmentation in digital images of H&E stained slides, Proceedings of the 9th International Conference on Bioinformatics and Biomedical Technology, 10.1145/3093293.3093307

Webster, 2014, Whole-slide imaging and automated image analysis: considerations and opportunities in the practice of pathology, Vet Pathol, 51, 211, 10.1177/0300985813503570

Farahani, 2017, Pathologists' computer-assisted diagnosis: a mock-up of a prototype information system to facilitate automation of pathology sign-out, Arch Pathol Lab Med, 141, 1413, 10.5858/arpa.2016-0214-OA

Sornapudi, 2018, Deep learning nuclei detection in digitized histology images by superpixels, J Pathol Inform, 9, 5, 10.4103/jpi.jpi_74_17

Tabesh, 2007, Multifeature prostate cancer diagnosis and Gleason grading of histological images, IEEE Trans Med Imaging, 26, 1366, 10.1109/TMI.2007.898536

Yuan, 2012, Quantitative image analysis of cellular heterogeneity in breast tumors complements genomic profiling, Sci Transl Med, 4, 157ra143, 10.1126/scitranslmed.3004330

Beck, 2011, Systematic analysis of breast cancer morphology uncovers stromal features associated with survival, Sci Transl Med, 3, 108ra113, 10.1126/scitranslmed.3002564

Luo, 2017, Comprehensive computational pathological image analysis predicts lung cancer prognosis, J Thorac Oncol, 12, 501, 10.1016/j.jtho.2016.10.017

Cruz-Roa, 2017, Accurate and reproducible invasive breast cancer detection in whole-slide images: a deep learning approach for quantifying tumor extent, Sci Rep, 7, 46450, 10.1038/srep46450

Vandenberghe, 2017, Relevance of deep learning to facilitate the diagnosis of HER2 status in breast cancer, Sci Rep, 7, 45938, 10.1038/srep45938

Litjens, 2016, Deep learning as a tool for increased accuracy and efficiency of histopathological diagnosis, Sci Rep, 6, 26286, 10.1038/srep26286