A Powder Technique for the Evaluation of Nonlinear Optical Materials

Journal of Applied Physics - Tập 39 Số 8 - Trang 3798-3813 - 1968
S. K. Kurtz1, T. T. Perry1
1Bell Telephone Laboratories, Incorporated Murray Hill, New Jersey

Tóm tắt

An experimental technique using powders is described which permits the rapid classification of materials according to

(a) magnitude of nonlinear optical coefficients relative to a crystalline quartz standard and

(b) existence or absence of phase matching direction(s) for second-harmonic generation.

Results are presented for a large number of inorganic and organic substances including single-crystal data on phase-matched second-harmonic generation in HIO3, KNbO3, PbTiO3, LiClO4·3H2O, and CO(NH2)2. Iodic acid (HIO3) has a nonlinear coefficient d14∼1.5×d31 LiNbO3. Since it is readily grown from water solution and does not exhibit optical damage effects, this material should be useful for nonlinear device applications.

Từ khóa


Tài liệu tham khảo

1964, Appl. Phys. Letters, 5, 234, 10.1063/1.1723604

1966, JETP Letters, 3, 241

1967, Appl. Phys. Letters, 10, 53, 10.1063/1.1754843

1967, Appl. Phys. Letters, 10, 336, 10.1063/1.1728202

1967, Appl. Phys. Letters, 11, 269, 10.1063/1.1755129

1963, Proc. IEEE, 51, 137, 10.1109/PROC.1963.1670

1963, Proc. IEEE, 51, 147, 10.1109/PROC.1963.1672

1967, J. Appl. Phys., 38, 1611, 10.1063/1.1709732

1966, J. Appl. Phys., 37, 388, 10.1063/1.1707846

1964, Appl. Phys. Letters, 5, 17, 10.1063/1.1754022

1966, J. Quantum Electron., QE-2, 328

1967, Appl. Phys. Letters, 10, 62, 10.1063/1.1754847

1967, Bell System Tech. J., 46, 913, 10.1002/j.1538-7305.1967.tb01721.x

1967, Appl. Phys. Letters, 10, 133, 10.1063/1.1754880

1967, IEEE J. Quantum Electron., QE-3, 695

1964, Appl. Phys. Letters, 4, 156, 10.1063/1.1754011

1963, Phys. Rev. Letters, 10, 43, 10.1103/PhysRevLett.10.43

1964, Phys. Rev., 133, 1493, 10.1103/PhysRev.133.A1493

1967, J. Quantum Electron., QE-3, 406

1967, Appl. Opt., 6, 125, 10.1364/AO.6.000125

1966, Phys. Rev. Letters, 16, 613, 10.1103/PhysRevLett.16.613

1963, Appl. Phys. Letters, 2, 54, 10.1063/1.1753771

1962, Phys. Rev., 128, 1761, 10.1103/PhysRev.128.1761

1966, Appl. Phys. Letters, 4, 169

1965, J. Chem. Phys., 43, 4083, 10.1063/1.1696646

1962, Phys. Rev. Letters, 8, 21, 10.1103/PhysRevLett.8.21

1962, Phys. Rev. Letters, 8, 19, 10.1103/PhysRevLett.8.19

1963, Phys. Rev. Letters, 11, 14, 10.1103/PhysRevLett.11.14

1964, Appl. Phys. Letters, 5, 17, 10.1063/1.1754022

1968, IEEE J. Quantum Electron., QE-4, 70

1967, Bell System Tech. J., 46, 913, 10.1002/j.1538-7305.1967.tb01721.x

1962, Phys. Rev. Letters, 8, 21, 10.1103/PhysRevLett.8.21

1925, Z. Physik, 33, 760, 10.1007/BF01328361

1962, Phys. Rev., 126, 1977, 10.1103/PhysRev.126.1977

1962, Compt. Rend., 255, 1135

1960, Dokl. Akad. Nauk SSSR, 135, 815

1960, Kristallografiya, 5, 913

1931, Phys. Rev., 37, 1626, 10.1103/PhysRev.37.1626

1966, Acta Cryst., 21, 841, 10.1107/S0365110X66004031

1966, Acta Cryst., 20, 758, 10.1107/S0365110X66001804

1965, J. Appl. Phys., 36, 2358, 10.1063/1.1714490

1966, Appl. Phys. Letters, 9, 72, 10.1063/1.1754607

1965, Appl. Phys. Letters, 6, 179, 10.1063/1.1754223

1968, Appl. Phys. Letters, 12, 186, 10.1063/1.1651945

1968, Bull. Am. Phys. Soc., 13, 388

1965, Proc. Electrochem. Soc., 112, 60C, 10.1149/1.2423465

1951, Acta Cryst., 4, 353, 10.1107/S0365110X51001112

1956, Acta Cryst., 9, 131, 10.1107/S0365110X56000309