Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Phương pháp số để mô hình hóa sự tiến hóa của cấu trúc vi mô cho hợp kim NiTi nhớ hình trong sản xuất bổ sung bằng phương pháp fusion lớp bột laser
Tóm tắt
Sự mô phỏng và dự đoán cấu trúc vi mô của các bộ phận được sản xuất bổ sung thông qua phương pháp fusion lớp bột laser là một phần thiết yếu trong thiết kế dựa trên tính toán của vật liệu và linh kiện. Trong công trình này, sự tiến hóa cấu trúc vi mô của các hợp kim NiTi đã được mô phỏng thông qua một phương pháp mô hình đa quy mô và đa vật lý. Mô hình bao gồm hai mô-đun tính toán cho mô phỏng nhiệt và sự tiến hóa cấu trúc vi mô. Lịch sử nhiệt và kích thước vùng chảy được thu thập từ mô phỏng nhiệt cho thấy sự tương đồng tốt với hình ảnh vi mô thực nghiệm của các mẫu. Phương pháp Tự động hóa Tế bào đã được áp dụng cho mô phỏng cấu trúc vi mô do chi phí tính toán thấp hơn so với các kỹ thuật khác. Mô hình Tự động hóa Tế bào được giới thiệu đã tạo ra một dự đoán hợp lý về cấu trúc vi mô. Các kết quả mô phỏng chỉ ra sự phát triển hạt austenite cạnh tranh theo dạng cột, phù hợp với những quan sát trên các mẫu chế tạo. Mô hình đã được xác thực sẽ phục vụ như một cơ sở cho các nghiên cứu trong tương lai hướng tới thiết kế vật liệu và linh kiện dựa vào mô hình.
Từ khóa
#Hợp kim NiTi #sản xuất bổ sung #mô phỏng nhiệt #tiến hóa cấu trúc vi mô #Tự động hóa Tế bàoTài liệu tham khảo
Mohd Jani J, Leary M, Subic A, Gibson MA (2014) A review of shape memory alloy research, applications and opportunities. Mater Des (1980–2015) 56:1078–1113
Nematollahi M, Baghbaderani KS, Amerinatanzi A, Zamanian H, Elahinia M (2019) Application of NiTi in assistive and rehabilitation devices: a review. Bioengineering (Basel) 6(2):37
Hartl DJ, Lagoudas DC (2007) Aerospace applications of shape memory alloys. Proc Inst Mech Eng Part G J Aerosp Eng 221(4):535–552
Shayesteh Moghaddam N, Saghaian SE, Amerinatanzi A, Ibrahim H, Li P, Toker GP, Karaca HE, Elahinia M (2018) Anisotropic tensile and actuation properties of NiTi fabricated with selective laser melting. Mater Sci Eng A 724:220–230
Safaei K, Abedi H, Nematollahi M, Kordizadeh F, Dabbaghi H, Bayati P, Javanbakht R, Jahadakbar A, Elahinia M, Poorganji B (2021) Additive manufacturing of NiTi shape memory alloy for biomedical applications: review of the LPBF process ecosystem. JOM 1–16
Nematollahi M, Toker G, Saghaian SE, Salazar J, Mahtabi M, Benafan O, Karaca H, Elahinia M (2019) Additive manufacturing of Ni-rich NiTiHf20: manufacturability, composition density, and transformation behavior. Shape Memory Superelast 5(1):113–124
Shayesteh Moghaddam N, Saedi S, Amerinatanzi A, Hinojos A, Ramazani A, Kundin J, Mills MJ, Karaca H, Elahinia M (2019) Achieving superelasticity in additively manufactured NiTi in compression without post-process heat treatment. Sci Rep 9(1):41–41
Lu HZ, Yang C, Luo X, Ma HW, Song B, Li YY, Zhang LC (2019) Ultrahigh-performance TiNi shape memory alloy by 4D printing. Mater Sci Eng A 763:138
Safaei K, Nematollahi M, Bayati P, Dabbaghi H, Benafan O, Elahinia M (2021) Torsional behavior and microstructure characterization of additively manufactured NiTi shape memory alloy tubes. Eng Struct 226:111383
Bayati P, Jahadakbar A, Safaie K, Nematollahi M, Dabbaghi H, Haghshenas M, Mahtabi M, Elahinia M (2020) Toward structural fatigue analysis of horizontally-fabricated NiTi via selective laser melting, volume 1: additive manufacturing; advanced materials manufacturing; biomanufacturing; life cycle engineering; manufacturing equipment and automation. American Society of Mechanical Engineers
Saedi S, Turabi AS, Andani MT, Moghaddam NS, Elahinia M, Karaca HE (2017) Texture, aging, and superelasticity of selective laser melting fabricated Ni-rich NiTi alloys. Mater Sci Eng A 686:1–10
Dabbaghi H, Safaei K, Nematollahi M, Bayati P, Elahinia M (2020) Additively manufactured NiTi and NiTiHf alloys: estimating service life in high-temperature oxidation. Materials 13(9):2104
Safaei Baghbaderani K, Nematollahi M, Bayatimalayeri P, Dabbaghi H, Jahadakbar A, Elahinia M (2020) Mechanical evaluation of selective laser melted Ni-rich NiTi: compression, tension, and torsion, volume 1: additive manufacturing; advanced materials manufacturing; biomanufacturing; life cycle engineering; manufacturing equipment and automation. American Society of Mechanical Engineers
Farjam N, Nematollahi M, Andani MT, Mahtabi MJ, Elahinia M (2020) Effects of size and geometry on the thermomechanical properties of additively manufactured NiTi shape memory alloy. Int J Adv Manuf Technol 107(7–8):3145–3154
Saghaian SE, Moghaddam NS, Nematollahi M, Saedi S, Elahinia M, Karaca HE (2018) Mechanical and shape memory properties of triply periodic minimal surface (TPMS) NiTi structures fabricated by selective laser melting. Biol Eng Med 3:1–7
Jahadakbar A, Nematollahi M, Safaei K, Bayati P, Giri G, Dabbaghi H, Dean D, Elahinia M (2020) Design, modeling, additive manufacturing, and polishing of stiffness-modulated porous nitinol bone fixation plates followed by thermomechanical and composition analysis. Metals 10(1):151
Masaylo D, Igoshin S, Popovich A, Popovich V (2020) Effect of process parameters on defects in large scale components manufactured by direct laser deposition. Mater Today Proc 30:665–671
Neugebauer F, Keller N, Ploshikhin V, Feuerhahn F, Köhler H (2014) Multi scale FEM simulation for distortion calculation in additive manufacturing of hardening stainless steel. In: international workshop on thermal forming and welding distortion, Bremen, Germany
Deng DA, Kiyoshima S (2010) Numerical simulation of welding residual stresses in a multi-pass butt-welded joint of austenitic stainless steel using. Acta Metall Sin 2010(2):195–200
Masoomi M, Shamsaei N, Winholtz RA, Milner JL, Gnäupel-Herold T, Elwany A, Mahmoudi M, Thompson SM (2017) Residual stress measurements via neutron diffraction of additive manufactured stainless steel 17–4 PH. Data Brief 13:408–414
Zhuo L, Wang Z, Zhang H, Yin E, Wang Y, Xu T, Li C (2019) Effect of post-process heat treatment on microstructure and properties of selective laser melted AlSi10Mg alloy. Mater Lett 234:196–200
Zheng B, Zhou Y, Smugeresky JE, Schoenung JM, Lavernia EJ (2008) Thermal behavior and microstructural evolution during laser deposition with laser-engineered net shaping: part I. Numerical calculations. Metall Mater Trans A 39(9):2228–2236
Zhu G, Zhang A, Li D, Tang Y, Tong Z, Lu Q (2011) Numerical simulation of thermal behavior during laser direct metal deposition. Int J Adv Manuf Technol 55(9–12):945–954
Promoppatum P, Yao S-C (2020) Influence of scanning length and energy input on residual stress reduction in metal additive manufacturing: numerical and experimental studies. J Manuf Process 49:247–259
Johnson KL, Rodgers TM, Underwood OD, Madison JD, Ford KR, Whetten SR, Dagel DJ, Bishop JE (2017) Simulation and experimental comparison of the thermo-mechanical history and 3D microstructure evolution of 304L stainless steel tubes manufactured using LENS. Comput Mech 61(5):559–574
Michopoulos JG, Iliopoulos AP, Steuben JC, Birnbaum AJ, Lambrakos SG (2018) On the multiphysics modeling challenges for metal additive manufacturing processes. Addit Manuf 22:784–799
Moges T, Ameta G, Witherell P (2019) A review of model inaccuracy and parameter uncertainty in laser powder bed fusion models and simulations. J Manuf Sci Eng. https://doi.org/10.1115/1.4042789
Kouraytem N, Li X, Tan W, Kappes B, Spear AD (2021) Modeling process–structure–property relationships in metal additive manufacturing: a review on physics-driven versus data-driven approaches. J Phys Mater 4(3):032002
Bandyopadhyay A, Traxel KD (2018) Invited Review Article: Metal-additive manufacturing—modeling strategies for application-optimized designs. Addit Manuf 22:758–774
Wang H, Zou Y (2019) Microscale interaction between laser and metal powder in powder-bed additive manufacturing: Conduction mode versus keyhole mode. Int J Heat Mass Transf 142:118473
Gao X, Faria GA, Zhang W, Wheeler KR (2020) Numerical analysis of non-spherical particle effect on molten pool dynamics in laser-powder bed fusion additive manufacturing. Comput Mater Sci 179:109648
Lee Y, Zhang W (2015) Mesoscopic simulation of heat transfer and fluid flow in laser powder bed additive manufacturing. In: International solid free form fabrication symposium, Austin, pp 1154–1165
Chen Q, Zhao Y, Strayer S, Zhao Y, Aoyagi K, Koizumi Y, Chiba A, Xiong W, To AC (2021) Elucidating the effect of preheating temperature on melt pool morphology variation in Inconel 718 laser powder bed fusion via simulation and experiment. Addit Manuf 37:101642
Cheng B, Li X, Tuffile C, Ilin C, Willeck H, Hartel U (2018) Multi-physics modeling of single track scanning in selective laser melting: powder compaction effect. In: Solid freeform fabrication 2018: Proceedings of the 29th annual international solid freeform fabrication symposium—an additive manufacturing conference, SFF
Abedi H (2014) Modeling of CP titanium annealing process with a single or dual beam laser source
Heeling T, Cloots M, Wegener K (2017) Melt pool simulation for the evaluation of process parameters in selective laser melting. Addit Manuf 14:116–125
Cao L, Yuan X (2019) Study on the numerical simulation of the SLM molten pool dynamic behavior of a nickel-based superalloy on the workpiece scale. Materials 12(14):2272
Yan L, Li W, Chen X, Zhang Y, Newkirk J, Liou F, Dietrich D (2016) Simulation of cooling rate effects on Ti–48Al–2Cr–2Nb crack formation in direct laser deposition. JOM 69(3):586–591
Mishra AK, Kumar A (2019) Numerical and experimental analysis of the effect of volumetric energy absorption in powder layer on thermal-fluidic transport in selective laser melting of Ti6Al4V. Opt Laser Technol 111:227–239
Lopez-Botello O, Martinez-Hernandez U, Ramírez J, Pinna C, Mumtaz K (2017) Two-dimensional simulation of grain structure growth within selective laser melted AA-2024. Mater Des 113:369–376
Yin J, Peng G, Chen C, Yang J, Zhu H, Ke L, Wang Z, Wang D, Ma M, Wang G, Zeng X (2018) Thermal behavior and grain growth orientation during selective laser melting of Ti-6Al-4V alloy. J Mater Process Technol 260:57–65
Pinomaa T, Yashchuk I, Lindroos M, Andersson T, Provatas N, Laukkanen A (2019) Process-structure-properties-performance modeling for selective laser melting. Metals 9(11):1138
Fallah V, Amoorezaei M, Provatas N, Corbin SF, Khajepour A (2012) Phase-field simulation of solidification morphology in laser powder deposition of Ti–Nb alloys. Acta Mater 60(4):1633–1646
Gong X, Chou K (2015) Phase-field modeling of microstructure evolution in electron beam additive manufacturing. JOM 67(5):1176–1182
Lu L-X, Sridhar N, Zhang Y-W (2018) Phase field simulation of powder bed-based additive manufacturing. Acta Mater 144:801–809
Luo S, Zhu M, Louhenkilpi S (2012) Numerical simulation of solidification structure of high carbon steel in continuous casting using cellular automaton method. ISIJ Int 52(5):823–830
Zinovieva O, Zinoviev A (2019) Numerical analysis of the grain morphology and texture in 316L steel produced by selective laser melting. In: Proceedings of the international conference on advanced materials with hierarchical structure for new technologies and reliable structures 2019. AIP Publishing
Rodgers TM, Madison JD, Tikare V (2017) Simulation of metal additive manufacturing microstructures using kinetic Monte Carlo. Comput Mater Sci 135:78–89
Liang Y-J, Cheng X, Li J, Wang H-M (2017) Microstructural control during laser additive manufacturing of single-crystal nickel-base superalloys: new processing–microstructure maps involving powder feeding. Mater Des 130:197–207
Nie P, Ojo OA, Li Z (2014) Numerical modeling of microstructure evolution during laser additive manufacturing of a nickel-based superalloy. Acta Mater 77:85–95
Choudhury A, Reuther K, Wesner E, August A, Nestler B, Rettenmayr M (2012) Comparison of phase-field and cellular automaton models for dendritic solidification in Al–Cu alloy. Comput Mater Sci 55:263–268
Akram J, Chalavadi P, Pal D, Stucker B (2018) Understanding grain evolution in additive manufacturing through modeling. Addit Manuf 21:255–268
Rai A, Markl M, Körner C (2016) A coupled Cellular Automaton-Lattice Boltzmann model for grain structure simulation during additive manufacturing. Comput Mater Sci 124:37–48
Zinovieva O, Zinoviev A, Ploshikhin V (2018) Three-dimensional modeling of the microstructure evolution during metal additive manufacturing. Comput Mater Sci 141:207–220
Gu D, He B (2016) Finite element simulation and experimental investigation of residual stresses in selective laser melted Ti–Ni shape memory alloy. Comput Mater Sci 117:221–232
Zhu J-N, Borisov E, Liang X, Farber E, Hermans MJM, Popovich VA (2021) Predictive analytical modelling and experimental validation of processing maps in additive manufacturing of nitinol alloys. Addit Manuf 38:101802
Karayagiz K (2019) Multi-scale multi-physics modeling of laser powder bed fusion additive manufacturing
Mehrpouya M, Gisario A, Rahimzadeh A, Nematollahi M, Baghbaderani KS, Elahinia M (2019) A prediction model for finding the optimal laser parameters in additive manufacturing of NiTi shape memory alloy. Int J Adv Manuf Technol 105(11):4691–4699
He X, Elmer JW, DebRoy T (2005) Heat transfer and fluid flow in laser microwelding. J Appl Phys 97(8):084909
Bayat M, Mohanty S, Hattel JH (2019) A systematic investigation of the effects of process parameters on heat and fluid flow and metallurgical conditions during laser-based powder bed fusion of Ti6Al4V alloy. Int J Heat Mass Transf 139:213–230
Haddad-Sabzevar M, Haerian A, Seied-Hossein-Zadeh H (2009) A stochastic model for austenite phase formation during arc welding of a low alloy steel. J Mater Process Technol 209(8):3798–3807
Foroozmehr A, Badrossamay M, Foroozmehr E, Golabi SI (2016) Finite element simulation of selective laser melting process considering optical penetration depth of laser in powder bed. Mater Des 89:255–263
Hooper PA (2018) Melt pool temperature and cooling rates in laser powder bed fusion. Addit Manuf 22:548–559
Bormann T, Müller B, Schinhammer M, Kessler A, Thalmann P, de Wild M (2014) Microstructure of selective laser melted nickel–titanium. Mater Charact 94:189–202
