A Novel Memetic Algorithm Based on Decomposition for Multiobjective Flexible Job Shop Scheduling Problem

Mathematical Problems in Engineering - Tập 2017 Số 1 - 2017
Chun Wang1, Zhicheng Ji1, Yan Wang1
1Engineering Research Center of IoT Technology Applications (Ministry of Education), Jiangnan University, Wuxi, 214122, China

Tóm tắt

A novel multiobjective memetic algorithm based on decomposition (MOMAD) is proposed to solve multiobjective flexible job shop scheduling problem (MOFJSP), which simultaneously minimizes makespan, total workload, and critical workload. Firstly, a population is initialized by employing an integration of different machine assignment and operation sequencing strategies. Secondly, multiobjective memetic algorithm based on decomposition is presented by introducing a local search to MOEA/D. The Tchebycheff approach of MOEA/D converts the three‐objective optimization problem to several single‐objective optimization subproblems, and the weight vectors are grouped by K‐means clustering. Some good individuals corresponding to different weight vectors are selected by the tournament mechanism of a local search. In the experiments, the influence of three different aggregation functions is first studied. Moreover, the effect of the proposed local search is investigated. Finally, MOMAD is compared with eight state‐of‐the‐art algorithms on a series of well‐known benchmark instances and the experimental results show that the proposed algorithm outperforms or at least has comparative performance to the other algorithms.

Từ khóa


Tài liệu tham khảo

10.1287/moor.1.2.117

10.1002/(SICI)1099-1425(200001/02)3:1<3::AID-JOS32>3.0.CO;2-Y

10.1016/j.eswa.2010.08.145

10.1016/j.cie.2011.12.014

10.1016/j.cor.2013.06.010

10.1109/4235.996017

10.1109/TEVC.2007.892759

10.1109/TEVC.2008.925798

10.1109/TEVC.2009.2033671

10.1016/j.ins.2012.06.007

10.1109/TEVC.2015.2420112

10.1109/TEVC.2015.2443001

ChangP. C. ChenS. H. ZhangQ. andLinJ. L. MOEA/D for flowshop scheduling problems Proceedings of the IEEE Congress on Evolutionary Computation (CEC ′08) June 2008 Hong Kong 1433–1438 https://doi.org/10.1109/cec.2008.4630982 2-s2.0-55749105522.

AlhindiA.andZhangQ. MOEA/D with Tabu Search for multiobjective permutation flow shop scheduling problems Proceedings of the 2014 IEEE Congress on Evolutionary Computation CEC 2014 July 2014 China 1155–1164 2-s2.0-84908592937 https://doi.org/10.1109/CEC.2014.6900413.

10.1007/s00500-016-2245-4

10.1080/0951192X.2016.1187301

10.1016/j.cie.2005.01.018

10.1016/j.cie.2007.04.010

10.1016/j.cie.2008.07.021

10.1007/s10845-008-0216-z

10.1016/j.cie.2010.07.014

WangS. WangL. LiuM. andXuY. An estimation of distribution algorithm for the multi-objective flexible job-shop scheduling problem Proceedings of the 2013 IEEE Symposium on Computational Intelligence in Scheduling CISched 2013 - 2013 IEEE Symposium Series on Computational Intelligence SSCI 2013 April 2013 Singapore 1–8 2-s2.0-84886708998 https://doi.org/10.1109/SCIS.2013.6613245.

10.1016/S0378-4754(02)00019-8

10.1109/TSMCC.2008.923888

10.1007/s00170-010-2642-2

10.1007/s10479-010-0751-9

10.1109/TASE.2013.2274517

10.1080/00207543.2011.555427

10.1016/j.ijpe.2012.03.034

10.1155/2012/478981

10.1080/00207543.2012.752588

10.1016/j.cor.2014.01.010

10.1016/j.ijpe.2010.08.004

10.1007/s00170-012-4701-3

CarvalhoL. C. F.andFernandesM. A. Multi-objective Flexible Job-Shop scheduling problem with DIPSO: More diversity greater efficiency Proceedings of the 2014 IEEE Congress on Evolutionary Computation CEC 2014 July 2014 China 282–289 2-s2.0-84908577263 https://doi.org/10.1109/CEC.2014.6900285.

10.1155/2015/940592

10.1016/j.amc.2012.03.018

10.1007/s00170-011-3665-z

ZhangQ. LiH. MaringerD. andTsangE. MOEA/D with NBI-style Tchebycheff approach for portfolio management Proceedings of the 2010 6th IEEE World Congress on Computational Intelligence WCCI 2010 - 2010 IEEE Congress on Evolutionary Computation CEC 2010 July 2010 Spain 2-s2.0-79959391007 https://doi.org/10.1109/CEC.2010.5586185.

10.1109/TEVC.2010.2051446

10.1109/tsmcc.2012.2188285

10.1109/TSMCB.2012.2231860

10.1109/TCYB.2013.2295886

10.1109/TSMCC.2002.1009117

10.1109/TEVC.2013.2281535

10.13196/j.cims.2014.04.zhaoshikui.0854.12.20140416

10.1016/j.cor.2007.02.014

10.1016/j.ins.2014.07.039

10.1007/bf02023073

10.1109/TEVC.2003.810758

10.1109/4235.797969

Demsar J., 2006, Statistical comparisons of classifiers over multiple data sets, Journal of Machine Learning Research, 7, 1

10.1023/A:1018930406487

10.1162/EVCO_a_00009