Một cảm biến sinh điện hóa mới dựa trên điện cực vàng đã được cải tiến để xác định hydrogen peroxide trong các mẫu đồ uống khác nhau

Food Analytical Methods - Tập 8 - Trang 1546-1555 - 2014
Navid Nasirizadeh1,2, Saeedeh hajihosseini1, Zahra Shekari1, Masoud Ghaani3
1Scientific Society of Nanotechnology, Yazd Branch, Islamic Azad University, Yazd, Iran
2Department of Textile Engineering, Yazd Branch, Islamic Azad University, Yazd, Iran
3Department of food science & technology, Science and Research Branch, Islamic Azad University, Yazd, Iran

Tóm tắt

Trong công trình hiện tại, một cảm biến sinh điện hóa được chế tạo dựa trên polyme nano composite Nafion, thuốc nhuộm toluidine blue (TB) và điện cực vàng (AuE) được sửa đổi bằng enzyme catalase. Các phân tử TB đã được hấp phụ mạnh mẽ lên Nafion/AuE. Các thuộc tính điện hóa của cảm biến này đã được kiểm tra. Phương pháp điện cực voltammetry tuần hoàn được sử dụng với các tốc độ quét khác nhau để nghiên cứu các thuộc tính redox của Nafion và AuE được sửa đổi TB (Nafion/TB/AuE). Hệ số chuyển electron, α, và hằng số tỷ lệ chuyển electron, k_s, lần lượt được tìm thấy là 0.48 và 12.1 ± 0.3 s−1 ở pH 7.0. Nafion, TB và AuE được sửa đổi bằng catalase (Nafion/TB/catalase/AuE) cho thấy phản ứng điện xúc tác xuất sắc đối với việc khử hydrogen peroxide (H2O2). Sử dụng voltammetry tuần hoàn, các tham số động học như hệ số chuyển electron, α, và hằng số tỷ lệ dị thể, k’, đã được xác định cho sự khử H2O2 trên bề mặt của cảm biến này. Voltammetry xung vi phân cho thấy hai khoảng tuyến tính động và giới hạn phát hiện là 0.25 μM cho H2O2.

Từ khóa

#cảm biến sinh điện hóa #hydrogen peroxide #toluidine blue #enzyme catalase #điện cực vàng

Tài liệu tham khảo

Andrieux CP, Saveant JM (1978) Heterogeneous (chemically modified electrodes, polymer electrodes) vs. homogeneous catalysis of electrochemical reactions. J Electroanal Chem 93:163–168 Bai Y-H, Du Y, Xu J-J, Chen H-Y (2007) Choline biosensors based on a bi-electrocatalytic property of MnO2 nanoparticles modified electrodes to H2O2. Electrochem Commun 9:2611–2616 Bai X, Chen G, Shiu K-K (2013) Electrochemical biosensor based on reduced graphene oxide modified electrode with Prussian blue and poly(toluidine blue O) coating. Electrochim Acta 89:454–460 Bard AJ, Faulkner LR (2000) Electrochemical methods: fundamentals and applications. Wiley, New York Chandra S, Lokesh KS, Nicolai A, Lang H (2009) Dendrimer-rhodium nanoparticle modified glassy carbon electrode for amperometric detection of hydrogen peroxide. Anal Chim Acta 632:63–68 Chen Q-Y, Li D-H, Yang H-H, Zhu Q-Z, Xu J-G, Zhao Y (1999) Interaction of a novel red-region fluorescent probe, Nile Blue, with DNA and its application to nucleic acids assay. Analyst 124:901–906 Chen S-M, Chuang G-H, Vasantha VS (2006) (Preparation and electrocatalytic properties of the TBO/nafion chemically-modified electrodes. J Electroanal Chem 588:235–243 Gaitan M, Goncales VR, Soler-Illia GJAA, Baraldo LM, de Torresi SIC (2010) Structure effects of self-assembled Prussian blue confined in highly organized mesoporous TiO2 on the electrocatalytic properties towards H2O2 detection. Biosens Bioelectron 26:890–893 Genfa Z, Dasgupta PK, Edgemond WS, Marx JN (1991) Determination of hydrogen peroxide by photoinduced fluorogenic reactions. Anal Chim Acta 243:207–216 Hamidi H, Shams E, Yadollahi B, Esfahani FK (2009) Fabrication of carbon paste electrode containing [PFeW11O39]4− polyoxoanion supported on modified amorphous silica gel and its electrocatalytic activity for H2O2 reduction. Electrochim Acta 54:3495–3500 Hsu CL, Chang KS, Kuo JC (2008) Determination of hydrogen peroxide residues in aseptically packaged beverages using an amperometric sensor based on a palladium electrode. Food Control 19:223–230 Hurdis EC, Romeyn H (1954) Accuracy of determination of hydrogen peroxide by cerate oxidimetry. Anal Chem 26:320–325 Jiang X, Zhu L, Yang D, Mao X, Wu Y (2009) Amperometric ethanol biosensor based on integration of alcohol dehydrogenase with meldola’s blue/ordered mesoporous carbon electrode. Electroanalysis 21:1617–1623 Kok GL, Holler TP, Lopez MB, Nachtrieb HA, Yuan M (1978) Chemiluminescent method for determination of hydrogen peroxide in the ambient atmosphere. Environ Sci Technol 12:1072–1076 Laviron E (1979) General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems. J Electroanal Chem 101:19–28 Lazrus AL, Kok GL, Gitlin SN, Lind JA, McLaren SE (1985) Automated fluorimetric method for hydrogen peroxide in atmospheric precipitation. Anal Chem 57:917–922 Li YF, Huang CZ, Li M (2002) Study of the interaction of Azur B with DNA and the determination of DNA based on resonance light scattering measurements. Anal Chim Acta 452:285–294 Lin Y, Cui X, Li L (2005) Low-potential amperometric determination of hydrogen peroxide with a carbon paste electrode modified with nanostructured cryptomelane-type manganese oxides. Electrochem Commun 7:166–172 Lo P-H, Kumar SA, Chen S-M (2008) Amperometric determination of H2O2 at nano-TiO2/DNA/thionin nanocomposite modified electrode. Colloids Surf B 66:266–273 Lobnik A, Cajlakovic M (2001) Sol–gel based optical sensor for continuous determination of dissolved hydrogen peroxide. Sensors Actuator B 74:194–199 Lu Q, Dong X, Li L-J, Hu X (2010) Direct electrochemistry-based hydrogen peroxide biosensor formed from single-layer graphene nanoplatelet–enzyme composite film. Talanta 82:1344–1348 Meng L, Wu P, Chen G, Cai C (2008) Low overpotential detection of NADH and ethanol based on thionine single-walled carbon nanotube composite. J Electrochem Soc 155:F231–F236 Nasirizadeh N, Zare HR, Fakhari AR, Ahmar H, Ahmadzadeh MR, Naeimi A (2011) A study of the electrochemical behavior of an oxadiazole derivative electrodeposited on multi-wall carbon nanotube-modified electrode and its application as a hydrazine sensor. J Solid State Electrochem 15:2683–2693 Nasirizadeh N, Shekari Z, Zare HR, Ardakani SAY, Ahmar H (2013a) Developing a sensor for the simultaneous determination of dopamine, acetaminophen and tryptophan in pharmaceutical samples using a multi-walled carbon nanotube and oxadiazole modified glassy carbon electrode. J Braz Chem Soc 24:1846–1856 Nasirizadeh N, Shekari Z, Zare HR, Shishehbore MR, Fakhari AR (2013b) Electrosynthesis of an imidazole derivative and its application as a bifunctional electrocatalyst for simultaneous determination of ascorbic acid, adrenaline, acetaminophen, and tryptophan at a multi-wall carbon nanotubes modified electrode surface. Biosens Bioelectron 41:608–614 Ping J, Wu J, Fan K, Ying Y (2011) An amperometric sensor based on Prussian blue and poly(o-phenylenediamine) modified glassy carbon electrode for the determination of hydrogen peroxide in beverages. Food Chem 126:2005–2009 Pournaghi-Azar MH, Ahour F, Pournaghi-Azar F (2010) Simple and rapid amperometric monitoring of hydrogen peroxide in salivary samples of dentistry patients exploiting its electro-reduction on the modified/palladized aluminum electrode as an improved electrocatalyst. Sensors Actuator B 145:334–339 Ricci F, Amine A, Moscone D, Palleschi G (2007) A probe for NADH and H2O2 amperometric detection at low applied potential for oxidase and dehydrogenase based biosensor applications. Biosens Bioelectron 22:854–862 Rocha FRP, Ródenas-Torralba E, Reis BF, Morales-Rubio Á, Mdl G (2005) A portable and low cost equipment for flow injection chemiluminescence measurements. Talanta 67:673–677 Skoog DA, Holler FJ, Crouch SR (2007) Principles of instrumental analysis. Thomson Brooks/Cole, London Song Y, Wang L, Ren C, Zhu G, Li Z (2006) A novel hydrogen peroxide sensor based on horseradish peroxidase immobilized in DNA films on a gold electrode. Sensors Actuator B 114:1001–1006 Song MJ, Hwang SW, Whang D (2010) Amperometric hydrogen peroxide biosensor based on a modified gold electrode with silver nanowires. J Appl Electrochem 40:2099–2105 Thenmozhi K, Narayanan SS (2007) Electrochemical sensor for H2O2 based on thionin immobilized 3-aminopropyltrimethoxy silane derived sol-gel thin film electrode. Sensors Actuator B 125:195–201 Thenmozhi K, Sriman Narayanan S (2007) Amperometric hydrogen peroxide sensor based on a sol-gel-derived ceramic carbon composite electrode with toluidine blue covalently immobilized using 3-aminopropyltrimethoxysilane. Anal Bioanal Chem 387:1075–1082 Tseng K-S, Chen L-C, Ho K-C (2005) Amperometric detection of hydrogen peroxide at a Prussian blue-modified FTO electrode. Sensors Actuator B 108:738–745 Wang W, Wang F, Yao Y, Hu S, Shiu K-K (2010) Amperometric bienzyme glucose biosensor based on carbon nanotube modified electrode with electropolymerized poly(toluidine blue O) film. Electrochim Acta 55:7055–7060 Zare HR, Shekari Z, Nasirizadeh N, Jafari AA (2012) Fabrication, electrochemical characteristics and electrocatalytic activity of 4-((2-hydroxyphenylimino)methyl)benzene-1,2-diol electrodeposited on a carbon nanotube modified glassy carbon electrode as a hydrazine sensor. Catal Sci Technol 2:2492–2501 Zhai X, Li Y, Liu G, Cao Y, Gao H, Yue C, Sheng N (2013) Electropolymerized toluidine blue O functionalized ordered mesoporous carbon-ionic liquid gel-modified electrode and its low-potential detection of NADH. Sensors Actuator B 178:169–175 Zhang K, Zhang N, Xu J, Wang H, Wang C, Shi H, Liu C (2011) Silver nanoparticles/poly(2-(N-morpholine) ethane sulfonic acid) modified electrode for electrocatalytic sensing of hydrogen peroxide. J Appl Electrochem 41:1419–1423 Zheng Y, Lin X-Q (2008) Modified electrode based on immobilizing horseradish peroxidase on nano-gold with choline covalently modified glassy carbon electrode as a base. Chin J Anal Chem 36:604–608