A New Microsphere-Based Immunoassay for Measuring the Activity of Transcription Factors
Tóm tắt
There are several traditional and well-developed methods for analyzing the activity of transcription factors, such as EMSA, enzyme-linked immunosorbent assay, and reporter gene activity assays. All of these methods have their own distinct disadvantages, but none can analyze the changes in transcription factors in the few cells that are cultured in the wells of 96-well titer plates. Thus, a new microsphere-based immunoassay to measure the activity of transcription factors (MIA-TF) was developed. In MIA-TF, NeutrAvidin-labeled microspheres were used as the solid phase to capture biotin-labeled double-strand DNA fragments which contain certain transcription factor binding elements. The activity of transcription factors was detected by immunoassay using a transcription factor-specific antibody to monitor the binding with the DNA probe. Next, analysis was performed by flow cytometry. The targets hypoxia-inducible factor-1α (HIF-1α) and nuclear factor-kappa B (NF-κB) were applied and detected in this MIA-TF method; the results that we obtained demonstrated that this method could be used to monitor the changes of NF-κB or HIF within 50 or 100 ng of nuclear extract. Furthermore, MIA-TF could detect the changes in NF-κB or HIF in cells that were cultured in wells of a 96-well plate without purification of the nuclear protein, an important consideration for applying this method to high-throughput assays in the future. The development of MIA-TF would support further progress in clinical analysis and drug screening systems. Overall, MIA-TF is a method with high potential to detect the activity of transcription factors.
Tài liệu tham khảo
Latchman DS: Eukaryotic transcription factors. 1995, Academic, London
Lee SB, Huang K, Palmer R, Truong VB, Herzlinger D, Kolquist KA, Wong J, Paulding C, Yoon SK: The Wilms tumor suppressor WT1 encodes a transcriptional activator of amphiregulin. Cell. 1999, 98: 663-673. 10.1016/S0092-8674(00)80053-7.
Dunn KL, Espino PS, Drobic B, He S, Davie JR: The Ras-MAPK signal transduction pathway, cancer and chromatin remodeling. Biochemistry and Cell Biology (Biochimie et biologie cellulaire). 2005, 83: 1-14. 10.1139/o04-121.
Pandolfi PP: Transcription therapy for cancer. Oncogene. 2001, 20: 3116-3127. 10.1038/sj.onc.1204299.
Li JL, Chen H, Li M, Hua D, Lu Z, Wang J: An optimized assay for transcription factor NF-kappaB with dsDNA-coupled microplate. Colloids Surface. 2007, 55: 31-37. 10.1016/j.colsurfb.2006.11.015.
Lewin B: Genes VIII: Pearson Education International. 2004, Prentice Hall, London
Gubler ML, Abarzua P: Nonradioactive assay for sequence-specific DNA binding proteins. BioTechniques. 1995, 18 (1008): 11-14.
Escarcega RO, Fuentes-Alexandro S, Garcia-Carrasco M, Gatica A, Zamora A: The transcription factor nuclear factor-kappa B and cancer. Clin Oncol (Royal College of Radiologists (Great Britain)). 2007, 19: 154-161.
Semenza G: Signal transduction to hypoxia-inducible factor 1. Biochem Pharmacol. 2002, 64: 993-998. 10.1016/S0006-2952(02)01168-1.
Thrash-Bingham CA, Tartof KD: aHIF: a natural antisense transcript overexpressed in human renal cancer and during hypoxia. J Natl Cancer Inst. 1999, 91: 143-151. 10.1093/jnci/91.2.143.
Prass K, Ruscher K, Karsch M, Isaev N, Megow D, Priller J, Scharff A, Dirnagl U, Meisel A: Desferrioxamine induces delayed tolerance against cerebral ischemia in vivo and in vitro. J Cereb Blood Flow Metab. 2002, 22: 520-525. 10.1097/00004647-200205000-00003.
Dignam JD, Lebovitz RM, Roeder RG: Accurate transcription initiation by RNA polymerase II in a soluble extract from isolated mammalian nuclei. Nucl Acids Res. 1983, 11: 1475-1489. 10.1093/nar/11.5.1475.
Little CD, Nau MM, Carney DN, Gazdar AF, Minna JD: Amplification and expression of the c-myc oncogene in human lung cancer cell lines. Nature. 1983, 306: 194-196. 10.1038/306194a0.
Shen Z, Peedikayil J, Olson GK, Siebert PD, Fang Y: Multiple transcription factor profiling by enzyme-linked immunoassay. BioTechniques. 2002, 32: 1168-70–72, 74 passim
Liu PQ, Tan S, Mendel MC, Murrills RJ, Bhat BM, Schlag B, Samuel R, Matteo JJ, de la Rosa R: Isogenic human cell lines for drug discovery: regulation of target gene expression by engineered zinc-finger protein transcription factors. J Biomol Screen. 2005, 10: 304-313. 10.1177/1087057104272663.
Winblade ND, Schmokel H, Baumann M, Hoffman AS, Hubbell JA: Sterically blocking adhesion of cells to biological surfaces with a surface-active copolymer containing poly(ethylene glycol) and phenylboronic acid. J Biomed Materi Res. 2002, 59: 618-631. 10.1002/jbm.1273.
Jagelska E, Brazda V, Pospisilova S, Vojtesek B, Palecek E: New ELISA technique for analysis of p53 protein/DNA binding properties. J Immunol Methods. 2002, 267: 227-235. 10.1016/S0022-1759(02)00182-5.
Jia XC, Raya R, Zhang L, Foord O, Walker WL, Gallo ML: A novel method of multiplexed competitive antibody binning for the characterization of monoclonal antibodies. J Immunol Methods. 2004, 288: 91-98. 10.1016/j.jim.2004.02.010.
Biagini RE, Sammons DL, Smith JP, MacKenzie BA, Striley CA, Semenova V: Comparison of a multiplexed fluorescent covalent microsphere immunoassay and an enzyme-linked immunosorbent assay for measurement of human immunoglobulin G antibodies to anthrax toxins. Clin Diagn Lab Immunol. 2004, 11: 50-55.
Wang J, Li ML, Hua D, Chen Q: Exonuclease-mediated ELISA-like assay for detecting DNA-binding activity of transcription factors: measurement of activated NF-kappaB. BioTechniques. 2006, 41 (79–88): 90-
de Jager W, Rijkers GT: Solid-phase and bead-based cytokine immunoassay: a comparison. Methods. 2006, 38: 294-303. 10.1016/j.ymeth.2005.11.008.
Hulse RE, Kunkler PE, Fedynyshyn JP, Kraig RP: Optimization of multiplexed bead-based cytokine immunoassays for rat serum and brain tissue. J Neurosci Method. 2004, 136: 87-98. 10.1016/j.jneumeth.2003.12.023.
Martins TB, Pasi BM, Litwin CM, Hill HR: Heterophile antibody interference in a multiplexed fluorescent microsphere immunoassay for quantitation of cytokines in human serum. Clin Diagn Lab Immunol. 2004, 11: 325-329.