A New Class of High-Order Energy Stable Flux Reconstruction Schemes
Tóm tắt
Từ khóa
Tài liệu tham khảo
Reed, W.H., Hill, T.R.: Triangular mesh methods for the neutron transport equation. Technical Report LA-UR-73-479, Los Alamos National Laboratory, Los Alamos, New Mexico, USA (1973)
Cockburn, B., Shu, C.: Runge–Kutta discontinuous Galerkin methods for convection-dominated problems. J. Sci. Comput. 16, 173 (2001)
Arnold, D.N., Brezzi, F., Cockburn, B., Marini, L.D.: Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal. 39, 1749 (2001)
Hesthaven, J.S., Warburton, T.: Nodal Discontinuous Galerkin Methods—Algorithms, Analysis, and Applications. Springer, Berlin (2008)
Hesthaven, J.S., Warburton, T.: Nodal high-order methods on unstructured grids. J. Comput. Phys. 181, 186 (2002)
Giraldo, F.X., Hesthaven, J.S., Warburton, T.: Nodal high-order discontinuous Galerkin methods for the spherical shallow water equations. J. Comput. Phys. 181, 499 (2002)
Kopriva, D.A., Kolias, J.H.: A conservative staggered-grid Chebyshev multidomain method for compressible flows. J. Comput. Phys. 125, 244 (1996)
Liu, Y., Vinokur, M., Wang, Z.J.: Spectral difference method for unstructured grids I: basic formulation. J. Comput. Phys. 216, 780 (2006)
Wang, Z.J., Liu, Y., May, G., Jameson, A.: Spectral difference method for unstructured grids II: extension to the Euler equations. J. Sci. Comput. 32, 45 (2007)
Liang, C., Premasuthan, S., Jameson, A.: High-order accurate simulation of low-Mach laminar flow past two side-by-side cylinders using spectral difference method. Comput. Struct. 87, 812 (2009)
Liang, C., Jameson, A., Wang, Z.J.: Spectral difference method for compressible flow on unstructured grids with mixed elements. J. Comput. Phys. 228, 2847 (2009)
Huynh, H.T.: A flux reconstruction approach to high-order schemes including discontinuous Galerkin methods. In: AIAA Computational Fluid Dynamics Meeting (2007)
Jameson, A.: A proof of the stability of the spectral difference method for all orders of accuracy. J. Sci. Comput. 45(1–3), 348–358 (2010)
Roe, P.L.: Approximate Riemann solvers, parameter vectors, and difference schemes. J. Comput. Phys. 43, 357 (1981)
Carpenter, M.H., Kennedy, C.: Fourth-order 2N-storage Runge-Kutta schemes. Technical Report TM 109112, NASA, NASA Langley Research Center (1994)