A New Class of High-Order Energy Stable Flux Reconstruction Schemes

Springer Science and Business Media LLC - Tập 47 Số 1 - Trang 50-72 - 2011
Peter E. Vincent1, Patrice Castonguay2, Antony Jameson2
1Stanford University
2Department of Aeronautics and Astronautics, Stanford University, Stanford, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Reed, W.H., Hill, T.R.: Triangular mesh methods for the neutron transport equation. Technical Report LA-UR-73-479, Los Alamos National Laboratory, Los Alamos, New Mexico, USA (1973)

Cockburn, B., Shu, C.: Runge–Kutta discontinuous Galerkin methods for convection-dominated problems. J. Sci. Comput. 16, 173 (2001)

Arnold, D.N., Brezzi, F., Cockburn, B., Marini, L.D.: Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal. 39, 1749 (2001)

Hesthaven, J.S., Warburton, T.: Nodal Discontinuous Galerkin Methods—Algorithms, Analysis, and Applications. Springer, Berlin (2008)

Hesthaven, J.S., Warburton, T.: Nodal high-order methods on unstructured grids. J. Comput. Phys. 181, 186 (2002)

Giraldo, F.X., Hesthaven, J.S., Warburton, T.: Nodal high-order discontinuous Galerkin methods for the spherical shallow water equations. J. Comput. Phys. 181, 499 (2002)

Kopriva, D.A., Kolias, J.H.: A conservative staggered-grid Chebyshev multidomain method for compressible flows. J. Comput. Phys. 125, 244 (1996)

Liu, Y., Vinokur, M., Wang, Z.J.: Spectral difference method for unstructured grids I: basic formulation. J. Comput. Phys. 216, 780 (2006)

Wang, Z.J., Liu, Y., May, G., Jameson, A.: Spectral difference method for unstructured grids II: extension to the Euler equations. J. Sci. Comput. 32, 45 (2007)

Liang, C., Premasuthan, S., Jameson, A.: High-order accurate simulation of low-Mach laminar flow past two side-by-side cylinders using spectral difference method. Comput. Struct. 87, 812 (2009)

Liang, C., Jameson, A., Wang, Z.J.: Spectral difference method for compressible flow on unstructured grids with mixed elements. J. Comput. Phys. 228, 2847 (2009)

Huynh, H.T.: A flux reconstruction approach to high-order schemes including discontinuous Galerkin methods. In: AIAA Computational Fluid Dynamics Meeting (2007)

Jameson, A.: A proof of the stability of the spectral difference method for all orders of accuracy. J. Sci. Comput. 45(1–3), 348–358 (2010)

Roe, P.L.: Approximate Riemann solvers, parameter vectors, and difference schemes. J. Comput. Phys. 43, 357 (1981)

Carpenter, M.H., Kennedy, C.: Fourth-order 2N-storage Runge-Kutta schemes. Technical Report TM 109112, NASA, NASA Langley Research Center (1994)