A Needleless Liquid Jet Injection Delivery Method for Cardiac Gene Therapy: a Comparative Evaluation Versus Standard Routes of Delivery Reveals Enhanced Therapeutic Retention and Cardiac Specific Gene Expression
Tóm tắt
This study evaluates needleless liquid jet method and compares it with three common experimental methods: (1) intramuscular injection (IM), (2) left ventricular intracavitary infusion (LVIC), and (3) LV intracavitary infusion with aortic and pulmonary occlusion (LVIC-OCCL). Two protocols were executed. First (n = 24 rats), retention of dye was evaluated 10 min after delivery in an acute model. The acute study revealed the following: significantly higher dye retention (expressed as % myocardial cross-section area) in the left ventricle in both the liquid jet [52 ± 4] % and LVIC-OCCL [58 ± 3] % groups p < 0.05 compared with IM [31 ± 8] % and LVIC [35 ± 4] %. In the second (n = 16 rats), each animal received adeno-associated virus encoding green fluorescent protein (AAV.EGFP) at a single dose with terminal 6-week endpoint. In the second phase with AAV.EGFP at 6 weeks post-delivery, a similar trend was found with liquid jet [54 ± 5] % and LVIC-OCCL [60 ± 8] % featuring more LV expression as compared with IM [30 ± 9] % and LVIC [23 ± 9] %. The IM and LVIC-OCCL cross sections revealed myocardial fibrosis. With more detailed development in future model studies, needleless liquid jet delivery offers a promising strategy to improve direct myocardial delivery.
Tài liệu tham khảo
Go, A. S., Mozaffarian, D., Roger, V. L., Benjamin, E. J., Berry, J. D., Blaha, M. J., et al. (2014). Heart disease and stroke statistics—2013 update: a report from the American Heart Association. Circulation, 129(3), e28–e292.
Brinks, H., & Koch, W. J. (2010). βARKct: a therapeutic approach for improved adrenergic signaling and function in heart disease. Journal of Cardiovascular Translational Research, 3, 499–506.
Kairouz, V., Lipskaia, L., Hajjar, R. J., & Chemaly, E. R. (2012). Molecular targets in heart failure gene therapy: current controversies and translational perspectives. Annals of the New York Academy of Sciences, 1254, 42–50.
Tang, T., Gao, M. H., & Hammond, H. K. (2012). Prospects for gene transfer for clinical heart failure. Gene Therapy, 19, 606–612.
Taimeh, Z., Loughran, J., Birks, E. J., & Bolli, R. (2013). Vascular endothelial growth factor in heart failure. Nature Reviews Cardiology, 10, 519–530.
Vatner, S. F. (2005). FGF induces hypertrophy and angiogenesis in hibernating myocardium. Circulation Research, 96, 705–707.
Jaski, B. E., Jessup, M. L., Mancini, D. M., Cappola, T. P., Pauly, D. F., Greenberg, B., Borow, K., Dittrich, H., Zsebo, K. M., & Hajjar, R. J. (2009). Calcium upregulation by percutaneous administration of gene therapy in cardiac disease (CUPID trial), a first-in-human phase 1/2 clinical trial. Journal of Cardiac Failure, 15, 171–181.
Jessup, M., Greenberg, B., Mancini, D., Cappola, T., Pauly, D. F., Jaski, B., et al. (2011). calcium upregulation by percutaneous administration of gene therapy in cardiac disease (CUPID): a phase 2 trial of intracoronary gene therapy of sarcoplasmic reticulum Ca2+-ATPase in patients with advanced heart failure. Circulation, 124, 304–313.
Hajjar, R. J., Zsebo, K., Deckelbaum, L., Thompson, C., Rudy, J., Yaroshinsky, A., et al. (2008). Design of a phase 1/2 trial of intracoronary administration of AAV1/SERCA2a in patients with heart failure. Journal of Cardiac Failure, 14(5), 355–367.
Greelish, J. P., Su, L. T., Lankford, E. B., Burkman, J. M., Chen, H., Konig, S. K., et al. (1999). Stable restoration of the sarcoglycan complex in dystrophic muscle perfused with histamine and a recombinant adeno-associated viral vector. Nature Medicine, 5(4), 439–443.
Calcedo, R., Morizono, H., Wang, L., McCarter, R., He, J., Jones, D., et al. (2011). Adeno-associated virus antibody profiles in newborns, children, and adolescents. Clinical and Vaccine Immunology, 18(9), 1586–1588.
Boekstegers, P., von Degenfeld, G., Giehrl, W., Kupatt, C., Franz, W., & Steinbeck, G. (2000). Myocardial gene transfer by selective pressure-regulated retroinfusion of coronary veins. Gene Therapy, 7, 232–240.
Fargnoli, A. S., Katz, M. G., Yarnall, C., Isidro, A., Petrov, M., Steuerwald, N., et al. (2013). Cardiac surgical delivery of the sarcoplasmic reticulum calcium ATPase rescues myocytes in ischemic heart failure. Annals of Thoracic Surgery, 96(2), 586–595.
Rosengart, T. K., Lee, L. Y., Patel, S. R., Sanborn, T. A., Parikh, M., Bergman, G. W., et al. (1999). Angiogenesis gene therapy: phase I assessment of direct intramyocardial administration of an adenovirus vector expressing VEGF121 cDNA to individuals with clinically significant severe coronary artery disease. Circulation, 100(5), 468–474.
Magovern, C. J., Mack, C. A., Zhang, J., Hahn, R. T., Ko, W., Isom, O. W., et al. (1996). Direct in vivo gene transfer to canine myocardium using a replication-deficient adenovirus vector. Annals of Thoracic Surgery, 62(2), 425–433. discussion 433-4.
Barr, E., Carroll, J., Kalynych, A. M., Tripathy, S. K., Kozarsky, K., Wilson, J. M., et al. (1994). Efficient catheter-mediated gene transfer into the heart using replication-defective adenovirus. Gene Therapy, 1(1), 51–58.
Matsuno, Y., Iwata, H., Umeda, Y., Takagi, H., Mori, Y., Miyazaki, J., et al. (2003). Nonviral gene gun mediated transfer into the beating heart. ASAIO Journal, 49(6), 641–644.
Nishizaki, K., Mazda, O., Dohi, Y., Kawata, T., Mizuguchi, K., Kitamura, S., et al. (2000). In vivo gene gun-mediated transduction into rat heart with Epstein-Barr virus-based episomal vectors. Annals of Thoracic Surgery, 70(4), 1332–1337.
Le Moigne, J., Mount, D. M., Netanyahu, N. S., & Memarsadeghi, N. (2007). A fast implementation of the ISODATA clustering algorithm. International Journal of Computational Geometry and Applications, 17, 71–103.
Grines, C. L., Watkins, M. W., Helmer, G., Penny, W., Brinker, J., Marmur, J. D., et al. (2002). Angiogenic gene therapy (AGENT) trial in patients with stable angina pectoris. Circulation, 105(11), 1291–1297.
Vale, P. R., Losordo, D. W., Milliken, C. E., McDonald, M. C., Gravelin, L. M., Curry, C. M., et al. (2001). Randomized, single-blind, placebo-controlled pilot study of catheter-based myocardial gene transfer for therapeutic angiogenesis using left ventricular electromechanical mapping in patients with chronic myocardial ischemia. Circulation, 103(17), 2138–2143.
Bish, L. T., Sleeper, M. M., Brainard, B., Cole, S., Russell, N., Withnall, E., et al. (2008). Percutaneous transendocardial delivery of self-complementary adeno-associated virus 6 achieves global cardiac gene transfer in canines. Molecular Therapy, 16(12), 1953–1959.
French, B. A., Mazur, W., Geske, R. S., & Bolli, R. (1994). Direct in vivo gene transfer into porcine myocardium using replication-deficient adenoviral vectors. Circulation, 90(5), 2414–2424.
Grossman, P. M., Han, Z., Palasis, M., Barry, J. J., & Lederman, R. J. (2002). Incomplete retention after direct myocardial injection. Catheterization and Cardiovascular Interventions, 55(3), 392–397.
Dixon, J. A., & Spinale, F. G. (2009). Large animal models of heart failure: a critical link in the translation of basic science to clinical practice. Circulation. Heart Failure, 2, 262–271.
Guzman, R. J., Lemarchand, P., Crystal, R. G., Epstein, S. E., & Finkel, T. (1993). Efficient gene transfer into myocardium by direct injection of adenovirus vectors. Circulation Research, 73(6), 1202–1207.
von Harsdorf, Schott, R. J., Shen, Y. T., Vatner, S. F., Mahdavi, V., & Nadal-Ginard, B. (1993). Gene injection into canine myocardium as a useful model for studying gene expression in the heart of large mammals. Circulation Research, 72(3), 688–695.
Mays, L. E., & Wilson, J. M. (2011). The complex and evolving story of T cell activation to AAV vector-encoded transgene products. Molecular Therapy, 19(1), 16–27.
Pfeffer, M. A., & Braunwald, E. (1990). Ventricular remodeling after myocardial infarction. Experimental observations and clinical implications. Circulation, 81, 1161–1172.
Blankinship, M. J., Gregorevic, P., Allen, J. M., Harper, S. Q., Harper, H., Halbert, C. L., et al. (2004). Efficient transduction of skeletal muscle using vectors based on adeno-associated virus serotype 6. Molecular Therapy, 10(4), 671–678.
Wang, Z., Zhu, T., Qiao, C., Zhou, L., Wang, B., Zhang, J., et al. (2005). Adeno-associated virus serotype 8 efficiently delivers genes to muscle and heart. Nature Biotechnology, 23(3), 321–328.
Boekstegers, P., & Kupatt, C. (2004). Current concepts and applications of coronary venous retroinfusions. Basic Research in Cardiology, 99, 373–381.
Byrne, M. J., Power, J. M., Preovolos, A., Mariani, J. A., Hajjar, R. J., & Kaye, D. M. (2008). Recirculating cardiac delivery of AAV2/1SERCA2a improves myocardial function in an experimental model of heart failure in large animals. Gene Therapy, 15(23), 1550–1557.
Liu, Q., Huang, W., Zhang, H., Wang, Y., Zhao, J., Song, A., et al. (2014). Neutralizing antibodies against AAV2, AAV5 and AAV8 in healthy and HIV-1-infected subjects in China: implications for gene therapy using AAV vectors. Gene Therapy.