A Multiple-Relaxation-Time Lattice Boltzmann Model for General Nonlinear Anisotropic Convection–Diffusion Equations

Zhenhua Chai1, Baochang Shi1, Zhaoli Guo2
1School of Mathematics and Statistics, Huazhong University of Science and Technology, Wuhan, China
2State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan, China

Tóm tắt

Từ khóa


Tài liệu tham khảo

Chen, S., Doolen, G.: Lattice Boltzmann method for fluid flows. Annu. Rev. Fluid Mech. 30, 329–364 (1998)

Guo, Z., Shu, C.: Lattice Boltzmann Method and Its Applications in Engineering. World Scientific, Singapore (2013)

Succi, S.: Lattice Boltzmann 2038. EPL 109, 50001 (2015)

Wolf-Gladrow, D.: A lattice Boltzmann equation for diffusion. J. Stat. Phys. 79, 1023–1032 (1995)

Huber, C., Chopard, B., Manga, M.: A lattice Boltzmann model for coupled diffusion. J. Comput. Phys. 229, 7956–7976 (2010)

Yan, G.: A lattice Boltzmann equation for waves. J. Comput. Phys. 161, 61–69 (2000)

Yu, X.M., Shi, B.C.: A lattice Bhatnagar–Gross–Krook model for a class of the generalized Burgers equations. Chin. Phys. 15, 1441–1449 (2006)

Succi, S.: A note on the lattice Boltzmann versus finite-difference methods for the numerical solution of the Fisher’s equation. Int. J. Mod. Phys. C 25, 1340015 (2014)

Chai, Z., Shi, B.: A novel lattice Boltzmann model for the Poisson equation. Appl. Math. Model. 32, 2050–2058 (2008)

Dawson, S.P., Chen, S., Doolen, G.D.: Lattice Boltzmann computations for reaction–diffusion equations. J. Chem. Phys. 98, 1514–1523 (1993)

Guo, Z.L., Shi, B.C., Wang, N.C.: Fully lagrangian and lattice Boltzmann methods for the advection–diffusion equation. J. Sci. Comput. 14, 291–300 (1999)

van der Sman, R.G.M., Ernst, M.H.: Convection–diffusion lattice Boltzmann scheme for irregular lattices. J. Comput. Phys. 160, 766–782 (2000)

He, X., Li, N., Goldstein, B.: Lattice Boltzmann simulation of diffusion–convection systems with surface chemical reaction. Mol. Simul. 25, 145–156 (2000)

Deng, B., Shi, B.C., Wang, G.C.: A new lattice Bhatnagar–Gross–Krook Model for the convection–diffusion equation with a source term. Chin. Phys. Lett. 22, 267–270 (2005)

Zheng, H.W., Shu, C., Chew, Y.T.: A lattice Boltzmann model for multiphase flows with large density ratio. J. Comput. Phys. 218, 353–371 (2006)

Shi, B.C., Deng, B., Du, R., Chen, X.W.: A new scheme for source term in LBGK model for convection–diffusion equation. Comput. Math. Appl. 55, 1568–1575 (2008)

Chopard, B., Falcone, J.L., Latt, J.: The lattice Boltzmann advection–diffusion model revisited. Eur. Phys. J. Spec. Top. 171, 245–249 (2009)

Huang, H.-B., Lu, X.-Y., Sukop, M.C.: Numerical study of lattice Boltzmann methods for a convection–diffusion equation coupled with Navier–Stokes equations. J. Phys. A 44, 055001 (2011)

Chai, Z., Zhao, T.S.: Lattice Boltzmann model for the convection–diffusion equation. Phys. Rev. E 87, 063309 (2013)

Perko, J., Patel, R.A.: Single-relaxation-time lattice Boltzmann scheme for advection–diffusion problems with large diffusion-coefficient heterogentities and high-advection transport. Phys. Rev. E 89, 053309 (2014)

Yoshida, H., Nagaoka, M.: Lattice Boltzmann method for the convection–diffusion equation in curvilinear coordinate systems. J. Comput. Phys. 257, 884–900 (2014)

Chai, Z., Zhao, T.S.: Nonequilibrium scheme for computing the flux of the convection–diffusion equation in the framework of the lattice Boltzmann method. Phys. Rev. E 90, 013305 (2014)

Liang, H., Shi, B.C., Guo, Z.L., Chai, Z.H.: Phase-field-based multiple-relaxation-time lattice Boltzmann model for incompressible multiphase flows. Phys. Rev. E 89, 053320 (2014)

Huang, R., Wu, H.: Lattice Boltzmann model for the correct convection–diffusion equation with divergence-free velocity field. Phys. Rev. E 91, 033302 (2015)

Li, Q., Chai, Z., Shi, B.: Lattice Boltzmann model for a class of convection–diffusion equations with variable coefficients. Comput. Math. Appl. 70, 548–561 (2015)

Huang, J., Yong, W.-A.: Boundary conditions of the lattice Boltzmann method for convection–diffusion equations. J. Comput. Phys. 300, 70–91 (2015)

Zhang, X., Bengough, A.G., Crawford, J.W., Young, I.M.: A lattice BGK model for advection and anisotropic dispersion equation. Adv. Water Resour. 25, 1–8 (2002)

Suga, S.: Stability and accuracy of lattice Boltzmann schemes for anisotropic advection–diffusion equations. Int. J. Mod. Phys. C 20, 633–650 (2009)

Servan-Camas, B., Tsai, F.T.-C.: Lattice Boltzmann method with two relaxation times for advection–diffusion equation: third order analysis and stability analysis. Adv. Water Resour. 31, 1113–1126 (2008)

Rasin, I., Succi, S., Miller, W.: A multi-relaxation lattice kinetic method for passive scalar diffusion. J. Comput. Phys. 206, 453–462 (2005)

Yoshida, H., Nagaoka, M.: Multiple-relaxation-time lattice Boltzmann model for the convection and anisotropic diffusion equation. J. Comput. Phys. 229, 7774–7795 (2010)

Li, L., Mei, R., Klausner, J.F.: Multiple-relaxation-time lattice Boltzmann model for the axisymmetric convection diffusion equation. Int. J. Heat Mass Transf. 67, 338–351 (2013)

Li, L., Chen, C., Mei, R., Klausner, J.F.: Conjugate heat and mass transfer in the lattice Boltzmann equation method. Phys. Rev. E 89, 043308 (2014)

Huang, R., Wu, H.: A modified multiple-relaxation-time lattice Boltzmann model for convection–diffusion equation. J. Comput. Phys. 274, 50–63 (2014)

Shi, B., Guo, Z.: Lattice Boltzmann model for nonlinear convection–diffusion equations. Phys. Rev. E 79, 016701 (2009)

Shi, B., Guo, Z.: Lattice Boltzmann simulation of some nonlinear convection–diffusion equations. Comput. Math. Appl. 61, 3443–3452 (2011)

Ginzburg, I.: Equilibrium-type and link-type lattice Boltzmann models for generic advection and anisotropic-dispersion equation. Adv. Water Resour. 28, 1171–1195 (2005)

Ginzburg, I.: Generic boundary conditions for lattice Boltzmann models and their application to advection and anisotropic dispersion equations. Adv. Water Resour. 28, 1196–1216 (2005)

Ginzburg, I.: Lattice Boltzmann modeling with discontinuous collision components: hydrodynmic and advection-diffusion equations. J. Stat. Phys. 126, 157–206 (2007)

Ginzburg, I.: Truncation errors, exact and heuristic stability analysis of two-relaxation-times lattice Boltzmann schemes for anisotropic advection–diffusion equation. Commun. Comput. Phys. 11, 1439–1502 (2012)

Ginzburg, I.: Multiple anisotropic collison for advection–diffusion lattice Boltzmann schemes. Adv. Water Res. 51, 381–404 (2013)

Lallemand, P., Luo, L.S.: Theory of the lattice Boltzmann method: dispersion, dissipation, isotropy, Galilean invariance, and stability. Phys. Rev. E 61, 6546–6562 (2000)

Qian, Y.H., d’Humières, D., Lallemand, P.: Lattice BGK models for Navier–Stokes equation. Europhys. Lett. 17, 479–484 (1992)

Ansumali, S., Karlin, I.V., Öttinger, H.C.: Minimal entropic kinetic models for hydrodynamics. Europhys. Lett. 63, 798–804 (2003)

Ginzburg, I., Verhaeghe, F., d’Humières, D.: Two-relaxation-time lattice Boltzmann scheme: about parametrization, velocity, pressure and mixed boundary conditions. Commun. Comput. Phys. 3, 427–478 (2008)

d’Humières, D.: Generalized lattice-Boltzmann equations. In: Shizgal, B.D., Weave, D.P. (eds.) Rarefied Gas Dynamics: Theory and Simulations, vol. 159, pp. 450–458. AIAA, Washington, DC (1992)

Luo, L.-S., Liao, W., Chen, X., Peng, Y., Zhang, W.: Numerics of the lattice Boltzmann method: effects of collision models on the lattice Boltzmann simulations. Phys. Rev. E 83, 056710 (2011)

Chai, Z., Chai, T.S.: Effect of the forcing term in the multiple-relaxation-time lattice Boltzmann equation on the shear stress or the strain rate tensor. Phys. Rev. E 86, 016705 (2012)

He, X., Chen, S., Doolen, G.D.: A novel thermal model for the lattice Boltzmann method in incompressible limit. J. Comput. Phys. 146, 282–300 (1998)

Guo, Z.-L., Zheng, C.-G., Shi, B.-C.: Non-equilibrium extrapolation method for velocity and pressure boundary conditions in the lattice Boltzmann method. Chin. Phys. 11, 366–374 (2002)

Zhang, T., Shi, B., Guo, Z., Chai, Z., Lu, J.: General bounce-back scheme for concentration boundary condition in the lattice-Boltzmann method. Phys. Rev. E 85, 016701 (2012)

Wazwaz, A.-M.: The tanh method for generalized forms of nonliner heat conduction and Burgers–Fisher equations. Appl. Math. Comput. 169, 321–338 (2005)

Karlsen, K.H., Brusdal, K., Dahle, H.K., Evje, S., Lie, K.-A.: The corrected operator splitting approach applied to a nonlinear advection–diffusion problem. Comput. Methods Appl. Mech. Eng. 167, 239–260 (1998)

Kurganov, A., Tadmor, E.: New high-resolution central schemes for nonlinear conservation laws and convection–diffusion equations. J. Comput. Phys. 160, 241–282 (2000)

He, X., Zou, Q., Luo, L.-S., Dembo, M.: Analytic solutions and analysis on non-slip boundary condition for the lattice Boltzmann BGK model. J. Stat. Phys. 87, 115–136 (1997)

Ginzburg, I., Adler, P.M.: Boundary flow condition analysis for the three-dimesional lattice Boltzmann model. J. Phys. II France 4, 191–214 (1994)

Boettinger, W.J., Warren, J.A., Beckermann, C., Karma, A.: Phase-field simualtion of solidification. Annu. Rev. Mater. Res. 32, 163–194 (2002)