A Measurement Theory for Time Geography

Geographical Analysis - Tập 37 Số 1 - Trang 17-45 - 2005
Harvey J. Miller1
1Department of Geography, University of Utah, Salt Lake City, UT

Tóm tắt

Hägerstrand's time geography is a powerful conceptual framework for understanding constraints on human activity participation in space and time. However, rigorous, analytical definitions of basic time geography entities and relationships do not exist. This limits abilities to make statements about error and uncertainty in time geographic measurement and analysis. It also compromises comparison among different time geographic analyses and the development of standard time geographic computational tools. The time geographic measurement theory in this article consists of analytical formulations for basic time geography entities and relations, specifically, the space–time path, prism, composite path‐prisms, stations, bundling, and intersections. The definitions have arbitrary spatial and temporal resolutions and are explicit with respect to informational assumptions: there are clear distinctions between measured and inferred components of each entity or relation. They are also general ton‐dimensional space rather than the strict two‐dimensional space of classical time geography. Algebraic solutions are available for one or two spatial dimensions, while numeric (but tractable) solutions are required for some entities and relations in higher dimensional space.

Từ khóa


Tài liệu tham khảo

10.1111/j.1467-8306.1995.tb01793.x-i1

10.1007/978-3-662-04027-0_13

Angel S., 1976, Urban Fields: A Geometry of Movement for Regional Science

10.1002/(SICI)1097-0258(19990315)18:5<497::AID-SIM45>3.3.CO;2-R

Burns L. D., 1979, Transportation, Temporal and Spatial Components of Accessibility

Casselman B.(1998).Geometry and Postscript; e‐document available at Digital Math Archives (http://www.sunsite.ubc.ca/DigitalMathArchives).

10.1007/978-3-662-04027-0_2

10.1007/978-3-662-03427-9

Dobson J. E. andP. F.Fisher. (2003). “Geoslavery ”University Consortium for Geographic Information Science Research Brief; available athttp://www.ucgis.org

10.1016/B978-0-444-89596-7.50017-1

Forer P., 1998, Spatial and Temporal Reasoning in Geographic Information Systems, 171, 10.1093/oso/9780195103427.003.0013

Frank A., 2001, Life and Motion of Socio‐Economic Units. GISDATA 8, 21

Golledge R. G., 1997, Spatial Behavior: A Geographic Perspective

10.4324/9780203303245_chapter_ONE

10.1111/j.1435-5597.1970.tb01464.x

Hawking S., 1996, The Nature of Space and Time

10.1023/A:1015812206586

10.1007/978-3-642-76598-8

10.1111/j.1538-4632.1989.tb00898.x

10.1016/S0198-9715(00)00029-6

10.1007/978-3-662-04027-0_14

10.1016/S0968-090X(00)00017-6

Kwan M.‐P., 1998, Network‐Based Constraints‐Oriented Choice set Formation using GIS, Geographical Systems, 5, 139

10.1080/10106049209354371

Lenntorp B.(1976). “Paths in Space–Time Environments: A Time Geographic Study of Movement Possibilities of Individuals ”Lund Studies in Geography Number 44 Royal University of Lund Sweden.

10.1023/A:1009764319102

10.1145/360349.360355

10.1016/0146-664X(79)90077-7

10.1068/b2641

10.1080/02693799108927856

10.1111/j.1538-4632.1999.tb00976.x

10.1016/S0198-9715(03)00059-0

Miller H. J., 2001, Geographic Information Systems for Transportation: Principles and Applications, 10.1093/oso/9780195123944.001.0001

10.1145/35039.35041

10.1145/102782.102784

10.1559/152304099782330725

10.1111/j.1538-4632.1996.tb00939.x

10.1111/j.1538-4632.2001.tb00448.x

10.1111/j.1435-5597.1991.tb01738.x

O'Rourke J., 1994, Computational Geometry in C

Peuquet D. J., 2002, Representations of Space and Time

10.1007/3-540-48482-5_9

Pred A., 1981, Behavioral Problems in Geography Revisited, 231

10.1007/978-1-4612-1098-6

10.1007/978-1-4615-5203-1_9

Shekhar S., 2002, Spatial Databases: A Tour

10.1559/152304097782438773

10.1080/136588198241923

10.1080/1365881022000016007

10.1007/BFb0053708

10.1111/j.1538-4632.1989.tb00874.x

10.1111/j.1538-4632.1989.tb00885.x

Van Bemmelen J., 1993, Vector vs. Raster‐Based Algorithms for Cross‐Country Movement Planning, Proceedings Auto-Carto, 11, 304

Weisstein E.(2002a). “Analysis ”Eric Weisstein's World of Mathematics http://mathworld.wolfram.com/Analysis

Weisstein E.(2002b). “Circle–Circle Intersection ”Eric Weisstein's World of Mathematics http://mathworld.wolfram.com/

Weisstein E.(2002c). “Circle–Ellipse Intersection ”Eric Weisstein's World of Mathematics http://mathworld.wolfram.com/

Weisstein E.(2002d). “Sphere–Sphere Intersection ”Eric Weisstein's World of Mathematics http://mathworld.wolfram.com/

Wu Y.‐H., 2001, Computational Tools for Measuring Space–Time Accessibility within Dynamic Flow Transportation Networks, Journal of Transportation and Statistics, 4, 1

10.1007/3-540-36389-0_5

10.4324/9780203471326