A Mössbauer effect study of Fe3+ bearing γ-Fe2SiO4

Science in China Series D: Earth Sciences - Tập 44 - Trang 34-46 - 2001
Zhe Li1, I. Shinno2, Danian Ye1, Pingqiu Fu3, Yueming Zhang3
1Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China
2Graduate School of Social and Cultural Studies, Fukuoka, Japan
3Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, China

Tóm tắt

Three synthetic Fe3+ bearing λ-Fe2SiO4 were analyzed using electron probe method, and the Mössbauer spectra of the samples at 298 K, 150 K, and 95 K were measured. Each spectrum at three temperatures is composed of two doublets. These two doublets are assigned to Fe2+ in the octahedral sites and Fe3+ in the tetrahedral sites, respectively. Site occupancies were determined. The results show that Fe3+ and a small amount of Si4+ are in the tetrahedral and octahedral sites, respectively. The average bond lengths of the octahedral and tetrahedral sites were calculated according to the equations primarily given by Hill et al., O’Neill and Navrotsky and modified by the authors. Furthermore, the octahedral and tetrahedral bond lengths were used to calculate cell parameters and oxygen parameters. In addition, Fe3+ line broadening in the Mössbauer spectra of Fe3+ bearing λ-Fe2SiO4 were interpreted by using the next nearest neighbor effects

Tài liệu tham khảo

Ringwood, A. E., Constitution of the mantle-III. Further data on the olivine-spinel transition, Geoch. Cosmoch. Acta, 1958, 15: 18. Ringwood, A. E., Prediction and confirmation of olivine-spinel transformation in Ni2SiO4, Geoch. Cosmoch. Acta, 1962, 26: 457. Ringwood, A. E., Olivine-spinel transformation in cobalt orthosilicate, Nature, 1963, 198: 79. Akimoto, S. I., Ida, Y., High-pressure synthesis of Mg2SiO4 spinel, Earth Planet Sci. Lett., 1966, 1: 358. Suito, K., Phase transformations of pure Mg2SiO4 into a spinel structure under high pressure and temperature, J. Phys. Earth, 1972, 20: 225. Morimoto, N., Tokonami, M., Watanabe, M. et al., Crystal structures of three polymorphs of Co2SiO4, Amer. Mineral., 1974, 59: 475. Yagi, T., Morumo, F., Akimoto, S., Crystal structure of spinel polymorphs of Fe2SiO4 and Ni2SiO4, Amer. Mineral., 1974, 59: 486. Ma, C. B., Phase equilibria and crystal chemistry in the SiO2-Ni2O-NiAl2O4, Ph. D. Thesis, Cambridge, Massachusetts: Harvard University, 1972, 1–35. Fu, P. Q., Xie, H. S., Zhang, L. M., A structure-mineralogical study of ringwoodite, J. Geochem., 1990, 9: 99. Choe, L., Ingalls, R., Brown, J. M. et al., Mössbauer studies of iron silicate spinel at high pressure, Phys. Chem. Minerals, 1992, 19: 236. O’Neill, H. St. C., McCammon, C. A., Mössbauer spectroscopy of mantle transition zone phase and determination of minimum Fe3+ content, Amer. Mineral., 1993, 78: 456. Hill, R. J., Craig, J. R., Gibbs, G. V., Systematics of the spinel structure type, Phys. Chem. Minerals, 1979, 4: 317. O’Neill, H. S., Navrotsky, A., Simple spinel: crystallographic parameters, cation radii, lattice energies and cation distribution, Amer. Mineral., 1983, 68: 181. Ye, D. N., Su, S. C., Gibbs, G. V., Variation of the grand mean value of Si-O distances in metamorphic reactions, in Commemorative Papers for Professor Yukio Matsumoto: Exploration of Volcanoes and Rocks in Japan, China and Antarctica (ed. Commemorative Committee for Professor Yukio Matsumota), Yamaguchi Prefecture (Japan): Yamaguchi Press, 1992, 475–477. Bancroft, G. M., Mössbauer spectroscopy: An Introduction for Inorganic Chemists and Geochemists, London: McGraw-Hill, 1973, 155–221. Annersten, H., Halenius, U., Iron distribution in pink muscovite, a discussion., Amer. Mineral., 1976, 61: 1045. Marshall, L., Dollase, W., Cation arrangement in Fe-Zn-Cr spinel oxides, Amer. Mineral., 1984, 69: 928. Steffen, G., Seifert, F., Amthauer, G., Ferric iron in sapphire: a Mössbauer spectroscopic study, Amer. Mineral., 1984, 69: 339. Wood, B. J., Virgo, D., Upper mantle oxidation state: Ferric iron contents of lherzolite spinel by57Fe Mössbauer spectroscopy and resultant oxygen fugacities, Geochim. Cosmochim. Acta, 1989, 53: 1277. Canil, D., Virgo, D., Scarfe, C. M., Oxidation state of mantle xenoliths from British Columbia, Canada, Contrib. Mineral. Petrol., 1990, 104: 453. Akasaka, M., Shinno, I., Mössbauer spectroscopy and its recent application to silicate mineralogy, Mineral. J. (in Japanese), 1992, 21: 3. Li, Z., Grave, De. E., The correlation of Fe2+ isomer shifts with bond lengths and bond strengths in neso-and sorosilicates, Science in China, 1995, 38(5): 478. Shinno, I., Hayashi, M., Kuroda, Y., Mössbauer studies of olivine, Mineral. J. (in Japanese), 1974, 7: 344. Shinno, I., A Mössbauer study of ferric iron in olivine, Phys. Chem. Minerals, 1981, 7: 91. Schaefer, M. W., Site occupancy and two-phase character of “ferrifayalite”, Amer. Mineral., 1985, 70: 729. Shannon, R. D., Prewitt, C. T., Effective ionic radii in oxides and fluorides, Acta Crystal., 1969, B25: 925. Shannon, R. D., Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides, Acta Crystal., 1976, A32: 751. Finger, L. W., Hazen, R. M., Yagi, T., Crystal structures and electron densities of nickel and iron silicate spinels at elevated temperature or pressure, Amer. Mineral., 1979, 64: 1002. Thompson, J. B. Jr., Role of aluminum in the rock-forming silicates, Bull. Geol. Soc. Amer., 1947, 58: 1232. Smith, J. V., Bailey, S. W., Second review of Al-O and Si-O tetrahedral distances, Acta Cryst., 1963, 16: 801. Brown, G. E., Gibbs, G. V., Oxygen coordination and the Si-O bond, Amer. Mineral., 1969, 54: 1528. Baur, W. H., Ohta, T., The Si5O16 pentamer in zunyite refined and empirical relationsfor individual silicon-oxygen bonds, Acta Crystal., 1982, B36: 390. Smyth, J. R., Bish, D. L., Crystal Structures and Cation Sites of the Rock-forming Minerals, Winchester (USA): Allen & Unwin Ltd, 1988, 82–89. Osborne, M. D., Fleet, M. E., Bancroft, G. M., Next nearest neighbor effects in the Mössbauer spectra of (Cr,Al) spinels, J. Solid State Chem., 1984, 53: 174. Li, Z., Stevens, J. G., Next nearest neighbor effect on tetrahedral ferrous and octahedral ferric ions in chromite, Science in China, Ser. B, 1986, 29(8): 889. Chen, N. L., Xu, B. F., Chen, J. G. et al., Fe2+-Fe3+ ordered distribution inchromite spinels, Phys. Chem. Minerals, 1992, 19: 255.