A Hille–Yosida Type Theorem in Ordered Convex Cones

Positivity - 2006
Eugen Popa1
1Universitatea ``Al. I. Cuza'' Iaşi, Romania

Tóm tắt

Từ khóa


Tài liệu tham khảo

Arendt, W., Grabosch, A., Greiner, G., Groh, U., Lotz, H.P., Moustakas, U., Nagel, R., Neubrander, F. and Schlotterbeck, U.: One Parameter Semigroups Of Positive Operators, Lecture Notes in Math. 1184. Springer–Verlag, Berlin, 1986.

Bliednter, J. and Hansen, W.: Markov processes and harmonic spaces. Z. Wahrsch. Verw. Gebiete 42(4) (1978), 309–325.

Bouleau, N. and Hirsch, F.: Dirichlet forms and analysis on Wiener space. de Gruyter Studies in Mathematics, 14. Walter de Gruyter Co., Berlin, 1991.

Boboc, N. and Bucur Gh.: Order and Convexity in Potential Theory. Potential Theory—Surveys and Problems (Prague, 1987), 24–41, Lecture Notes in Math., 1344, Springer, Berlin, 1988.

Boboc, N. and Bucur, Gh.: Compression and dilation operators on excessive structures. Rev.Roumaine Math. Pures Appl. 38(4) (1993), 289–317.

Boboc, N. Bucur, Gh. and Cornea, A.: Order and Convexity in Potential Theory: H–cones, Lecture Notes in Math.vol. 853, Springer Verlag, 1982.

Constantinescu, C. and Cornea, A.: Potential theory on harmonic spaces. Die Grundlehren der mathematischen Wissenschaften, Band 158. Springer-Verlag, New York–Heidelberg, 1972.

Cornea, A. and Licea, G.: Order and Potential. Resolvent Families of Kernels, Lecture Notes in Math. vol. 494, Springer Verlag, 1975.

Dellacherie, C. and Meyer, P.-A.: Probabilités et Potentiel, Act. Sci. Ind. Hermann, Paris, 1987.

Hille, E. and Phillips, R.S.: Functional Analysis and Semi–groups, A.M.S., Providence, 1957.

Getoor, R.K.: Excessive Measures. Probability and its Applications. Birkhäuser Boston, Inc., Boston, MA, 1990.

Ma, Z.M. and Röckner, M.: Introduction to the Theory of (nonsymmetric) Dirichlet Forms. Universitext. Springer-Verlag, Berlin, 1992.

Mokobodzki, G. and Sibony, D.: Cônes de fonctions et théorie du potentiel. I. Les noyaux associés à un cône de fonctions. Séminaire de Théorie du Potentiel, dirigé par M. Brelot, G. Choquet et J. Deny: 1966/67, Exp. 8 35 pp. Secrétariat mathmatique, Paris.

Popa, E.: Semi-dynamical systems on algebraic structures, An. şt. Univ. Iaşi t. XLIV, sIa, Matematica, (1998), Supl. pg. 585–596.

Popa, E.: Excessive elements in semi-dynamical systems on algebraic structures, An. şt. Univ. Iaşi t. XLV, sIa, Matematica, (1999), f.2, pg. 367–378.

Popa, E.: Semi-groups of kernels on cones of positive measures, in: Int. Congress of Math. Beijing 2002, Abstracts of short communications and poster sessions, Higher Ed. Press, pp. 130–131.

Popa, E.: On Riesz' splitting property, Libertas Math. XXII (2002), 79–96.

Popa, E.: Resolvents associated with semi-dynamical systems in duality, to appear in An. şt. Univ. Iaşi.

Popa, E.: Semi-dynamical systems on cones of positive measures, to appear in An. şt. Univ. Iaşi

Rudin, W.: Functional Analysis, McGraw–Hill, New York, 1973.

Voicu, M.: Resolvent positive operators. An. Univ. Bucureşti Mat. 38(3) (1989), 83–90.

Widder, D.V.: The Laplace Transform, Princeton University Press, London, 1946.