A Generalized Jentzsch Theorem
Tài liệu tham khảo
Abramovich, Y.A. and Aliprantis, C.D. An invitation to operator theory, American Mathematical Society, Providence, 2002.
K.-H. Förster B. Nagy (1998) ArticleTitleOn Nonnegative Operators and Fully Cyclic Peripheral Spectrum The electronic Journal of Linear Algebra 3 13–23
J.J. Grobler (1987) ArticleTitleA note on the theorems of Jentzsch–Perron and Frobenius Indag. Math. 90 381–391
Grobler, J.J.: Spectral Theory in Banach Lattices, in: C.B. Huijsmans, M.A. Kaashoek, W.A.J. Luxemburg, and B. de Pagter eds., Operator Theory in Function Spaces and Banach Lattices (Operator Theory, Advances and Applications), 75, Birkhäuser, 1995, pp. 133–172.
R.-J. Jang (2000) ArticleTitleOn the peripheral spectrum of order continuous positive operators Positivity 4 IssueID2 119–130 Occurrence Handle10.1023/A:1009883407693
P. Jentzsch (1912) ArticleTitleÜber Integralgleichungen mit positive Kern J. Reine Angew. Math. 141 235–244
Kitover, A.K. and A.W. Wickstead.: Operator Norm Limits of Order Continuous Operators, to appear.
H.P. Lotz (1968) ArticleTitleÜber das Spectrum positiver Operatoren Math. Z. 108 15–32 Occurrence Handle10.1007/BF01110453
H.P. Lotz H.H. Schaefer (1969) ArticleTitleÜber einen Satz von F. Niiro and I. Sawashima Math. Z. 108 33–36 Occurrence Handle10.1007/BF01110454
J.J. McDonald (2003) ArticleTitleThe peripheral spectrum of a nonnegative matrix Linear Algebra and its Applications 363 217–235 Occurrence Handle10.1016/S0024-3795(02)00616-X
B.-S. Tam (1990) ArticleTitleOn nonnegative matrices with a fully cyclic peripheral spectrum Tamkang J. Math. 21 65–70
A.C. Zaanen (1983) Riesz spaces II North-Holland Amsterdam
A.C. Zaanen (1997) Introduction to operator theory in Riesz spaces Springer-Verlag New York and Heidelberg