A Generalized Jentzsch Theorem

Positivity - Tập 9 - Trang 501-509 - 2005
A. K. Kitover1
1Department of Mathematics, Community College of Philadelphia, Philadelphia, USA

Tài liệu tham khảo

Abramovich, Y.A. and Aliprantis, C.D. An invitation to operator theory, American Mathematical Society, Providence, 2002. K.-H. Förster B. Nagy (1998) ArticleTitleOn Nonnegative Operators and Fully Cyclic Peripheral Spectrum The electronic Journal of Linear Algebra 3 13–23 J.J. Grobler (1987) ArticleTitleA note on the theorems of Jentzsch–Perron and Frobenius Indag. Math. 90 381–391 Grobler, J.J.: Spectral Theory in Banach Lattices, in: C.B. Huijsmans, M.A. Kaashoek, W.A.J. Luxemburg, and B. de Pagter eds., Operator Theory in Function Spaces and Banach Lattices (Operator Theory, Advances and Applications), 75, Birkhäuser, 1995, pp. 133–172. R.-J. Jang (2000) ArticleTitleOn the peripheral spectrum of order continuous positive operators Positivity 4 IssueID2 119–130 Occurrence Handle10.1023/A:1009883407693 P. Jentzsch (1912) ArticleTitleÜber Integralgleichungen mit positive Kern J. Reine Angew. Math. 141 235–244 Kitover, A.K. and A.W. Wickstead.: Operator Norm Limits of Order Continuous Operators, to appear. H.P. Lotz (1968) ArticleTitleÜber das Spectrum positiver Operatoren Math. Z. 108 15–32 Occurrence Handle10.1007/BF01110453 H.P. Lotz H.H. Schaefer (1969) ArticleTitleÜber einen Satz von F. Niiro and I. Sawashima Math. Z. 108 33–36 Occurrence Handle10.1007/BF01110454 J.J. McDonald (2003) ArticleTitleThe peripheral spectrum of a nonnegative matrix Linear Algebra and its Applications 363 217–235 Occurrence Handle10.1016/S0024-3795(02)00616-X B.-S. Tam (1990) ArticleTitleOn nonnegative matrices with a fully cyclic peripheral spectrum Tamkang J. Math. 21 65–70 A.C. Zaanen (1983) Riesz spaces II North-Holland Amsterdam A.C. Zaanen (1997) Introduction to operator theory in Riesz spaces Springer-Verlag New York and Heidelberg