A Crash Course in Good and Bad Controls

Sociological Methods and Research - Tập 53 Số 3 - Trang 1071-1104 - 2024
Carlos Cinelli1, Andrew Forney2, Judea Pearl3
1Department of Statistics, University of Washington, Seattle
2Department of Computer Science, Loyola Marymount University, Los Angeles
3Department of Computer Science, University of California, Los Angeles

Tóm tắt

Many students of statistics and econometrics express frustration with the way a problem known as “bad control” is treated in the traditional literature. The issue arises when the addition of a variable to a regression equation produces an unintended discrepancy between the regression coefficient and the effect that the coefficient is intended to represent. Avoiding such discrepancies presents a challenge to all analysts in the data intensive sciences. This note describes graphical tools for understanding, visualizing, and resolving the problem through a series of illustrative examples. By making this “crash course” accessible to instructors and practitioners, we hope to avail these tools to a broader community of scientists concerned with the causal interpretation of regression models.

Từ khóa


Tài liệu tham khảo

10.1515/9781400829828

10.1080/01621459.1996.10476902

Angrist J. D., 2014, Mastering ’metrics: The Path From Cause to Effect

10.1016/B978-1-55860-332-5.50011-0

10.1080/01621459.1997.10474074

10.1097/EDE.0b013e31828c776c

10.1073/pnas.1510507113

10.1093/jas/sky277

10.3386/t0343

10.1007/978-94-007-6094-3_15

Bowden R. J., 1990, Instrumental Variables

10.1093/esr/jcy037

Brito C., Pearl J. 2002. “Generalized instrumental variables”. In Proceedings of the Eighteenth conference on Uncertainty in artificial intelligence, pages 85–93. Morgan Kaufmann Publishers Inc.

Chen B., 2013, Real-World Economics Review

Chernozhukov V., Cinelli C., Newey W., Sharma A., Syrgkanis V. 2021. “Omitted variable bias in machine learned causal models.” arXiv preprint arXiv:2112.13398.

10.2139/ssrn.3588978

10.1111/rssb.12348

Cinelli C., Work. Pap

Cinelli C., 2019, International Conference on Machine Learning

Cinelli C., Pearl J., Chen B. 2018. When confounders are confounded: Naive benchmarking in sensitivity analysis.

Cramér H, 1946, Mathematical Methods of Statistics

10.2307/j.ctv1c29t27

10.1515/jci-2013-0021

10.1002/sim.6973

10.1007/978-94-007-6094-3_13

10.1146/annurev-soc-071913-043455

10.1097/ALN.0000000000003193

10.1017/9781139161879

10.1097/00001648-199901000-00008

10.1038/s41467-020-19478-2

10.1162/003465304323023688

10.1111/rssb.12451

Hernán M., 2020, Causal Inference: What If

10.1093/aje/kwj275

Hünermund P., Bareinboim E. 2019. “Causal inference and data-fusion in econometrics.” arXiv preprint arXiv:1912.09104.

10.1017/CBO9781139025751

10.18637/jss.v047.i11

Kuroki M., Cai Z. 2004. “Selection of identifiability criteria for total effects by using path diagrams.” In Proceedings of the Conference on Uncertainty in Artificial Intelligence, pages 333–340.

10.1111/1467-9868.00381

LaPierre N., Hill B. L., Zhang Z., Cinelli C. 2022. sensemakr: Sensitivity analysis tools for OLS in python. https://github.com/KennyZhang-17/PySensemakr.

10.1093/pan/mpw015

Morgan S. L., 2015, Counterfactuals and Causal Inference

10.1093/biomet/82.4.669

Pearl J, Causality, 10.1017/CBO9780511803161

Pearl J. 2009b. Letter to the editor: Remarks on the method of propensity score. Statistics in Medicine, 28:1420–1423. URL: https://ucla.in/2NbS14j.

Pearl J. 2009c. Myth, confusion, and science in causal analysis. UCLA Cognitive Systems Laboratory, Technical Report (R-348). URL: https://ucla.in/2EihVyD.

Pearl J. 2010. On a class of bias-amplifying variables that endanger effect estimates. In Proceedings of the Twenty-Sixth Conference on Uncertainty in Artificial Intelligence, pages 417–424. URL: https://ucla.in/2N8mBMg.

10.1093/aje/kwr352

10.1515/jci-2013-0003

10.1515/jci-2015-0004

10.1214/09-SS057

Pearl J., 2016, Causal Inference in Statistics: a Primer

Pearl J., 2018, The Book of Why: The New Science of Cause and Effect

Perkovic E., 2018, Journal of Machine Learning Research, 18

10.1177/2515245917745629

10.2307/2981697

10.1007/978-1-4757-3692-2

Rotnitzky A., 2020, Journal of Machine Learning Research, 21, 1

10.1002/sim.3565

10.1016/j.eeh.2020.101356

Shpitser I., 2008, Journal of Machine Learning Research, 9, 1941

Shpitser I., VanderWeele T., Robins J. M. 2012. On the validity of covariate adjustment for estimating causal effects. arXiv preprint arXiv:1203.3515.

10.1002/sim.3554

10.1002/sim.3532

10.1515/jci-2016-0009

Textor J., 2016, International journal of epidemiology, 45, 1887

Thompson C. 2019. Causal graph analysis with the causalgraph procedure. In Proceedings of SAS Global Forum.

10.18637/jss.v076.i12

10.1162/REST_a_00153

Witte J., 2020, Journal of Machine Learning Research, 21, 246

Wooldridge J. 2009. Should instrumental variables be used as matching variables. Technical report, Citeseer.

10.1017/S0266466605050516

Wooldridge J. M, 2010, Econometric Analysis of Cross Section and Panel Data

Wright P. G, 1928, Tariff on Animal and Vegetable Oils

Wright S, 1921, Journal of agricultural research, 20, 557

Zhang C., Cinelli C., Chen B., Pearl J. 2021. Exploiting equality constraints in causal inference. In International Conference on Artificial Intelligence and Statistics, pages 1630–1638. PMLR.