A Computational Framework for Material Design

Shengyen Li1,2, Ursula R. Kattner1, Carelyn E. Campbell1
1NIST/Materials Science and Engineering Division, Gaithersburg, USA
2Theiss Research, La Jolla, USA

Tóm tắt

A computational framework is proposed that enables the integration of experimental and computational data, a variety of user-selected models, and a computer algorithm to direct a design optimization. To demonstrate this framework, a sample design of a ternary Ni-Al-Cr alloy with a high work-to-necking ratio is presented. This design example illustrates how CALPHAD phase-based, composition and temperature-dependent phase equilibria calculations and precipitation models are coupled with models for elastic and plastic deformation to calculate the stress-strain curves. A genetic algorithm then directs the search within a specific set of composition and processing constraints for the ideal composition and processing profile to optimize the mechanical properties. The initial demonstration of the framework provides a potential solution to initiate the material design process in a large space of composition and processing conditions. This framework can also be used in similar material systems or adapted for other material classes.

Tài liệu tham khảo

Ågren J (2015) Nucleation-a challenge in the modelling of phase transformations. In: International conference on solid-solid phase transformations in inorganic materials 2015, PTM 2015, Canada, pp 9–14 Ahmadi M, Povoden-Karadeniz E, Whitmore L, Stockinger M, Falahati A, Kozeschnik E (2014) Yield strength prediction in Ni-base alloy 718plus based on thermo-kinetic precipitation simulation. Mater Sci Eng A 608:114–122 Ai C, Zhao X, Zhou J, Zhang H, Liu L, Pei Y, Li S, Gong S (2015) Application of a modified ostwald ripening theory in coarsening of γ phases in ni based single crystal superalloys. J Alloys Compd 632:558–562 Andersson JO, Helander T, Höglund L, Shi P, Sundman B (2002) Thermo-Calc & DICTRA, computational tools for materials science. Calphad 26(2):273–312 Bonvalet M, Philippe T, Sauvage X, Blavette D (2015) Modeling of precipitation kinetics in multicomponent systems: application to model superalloys. Acta Mater 100:169–177 Booth-Morrison C, Weninger J, Sudbrack CK, Mao Z, Noebe RD, Seidman DN (2008) Effects of solute concentrations on kinetic pathways in Ni–Al–Cr alloys. Acta Mater 56(14):3422–3438 Booth-Morrison C, Zhou Y, Noebe RD, Seidman DN (2010) On the nanometer scale phase separation of a low-supersaturation Ni–Al–Cr alloy. Phil Mag 90(1-4):219–235 Bouaziz O, Estrin Y, Brechet Y, Embury J (2010) Critical grain size for dislocation storage and consequences for strain hardening of nanocrystalline materials. Scr Mater 63(5):477–479 Breidi A, Fries S, Palumbo M, Ruban A (2016) First-principles modeling of energetic and mechanical properties of Ni–Cr, Ni–Re and Cr–Re random alloys. Comput Mater Sci 117:45–53 Campbell C, Boettinger W, Hansen T, Merewether P, Mueller B (2005) Examination of multicomponent diffusion between two Ni-base superalloys. In: Complex inorganic solids. Springer, pp 241–249 Campbell C, Boettinger W, Kattner U (2002) Development of a diffusion mobility database for Ni-base superalloys. Acta Mater 50(4):775–792 Cao W, Chen SL, Zhang F, Wu K, Yang Y, Chang Y, Schmid-Fetzer R, Oates W (2009) Pandat software with panengine, panoptimizer and panprecipitation for multi-component phase diagram calculation and materials property simulation. Calphad 33(2):328–342 Chakraborti N (2004) Genetic algorithms in materials design and processing. Int Mater Rev 49(3-4):246–260 Chen Q, Jeppsson J, AAgren J (2008) Analytical treatment of diffusion during precipitate growth in multicomponent systems. Acta materialia 56(8):1890–1896 Chen XM, Lin Y, Chen MS, Li HB, Wen DX, Zhang JL, He M (2015) Microstructural evolution of a nickel-based superalloy during hot deformation. Mater Des 77:41–49 Choi Y, Parthasarathy T, Dimiduk D, Uchic M (2005) Numerical study of the flow responses and the geometric constraint effects in Ni-base two-phase single crystals using strain gradient plasticity. Mater Sci Eng A 397(1):69–83 Cimrman R (2014) Sfepy - write your own FE application. In: de Buyl P, Varoquaux N (eds) Proceedings of the 6th european conference on python in science (EuroSciPy 2013). arXiv:1404.6391, pp 65–70 Coello Coello CA, Toscano Pulido G (2001) A micro-genetic algorithm for multiobjective optimization. In: Evolutionary multi-criterion optimization. Springer, pp 126–140 Collins D, Stone H (2014) A modelling approach to yield strength optimisation in a nickel-base superalloy. Int J Plast 54:96–112 Crudden D, Mottura A, Warnken N, Raeisinia B, Reed R (2014) Modelling of the influence of alloy composition on flow stress in high-strength nickel-based superalloys. Acta Mater 75:356–370 Crudden DJ, Raeisinia B, Warnken N, Reed RC (2013) Analysis of the chemistry of Ni-base turbine disk superalloys using an alloys-by-design modeling approach. Metall Mater Trans A 44(5):2418–2430 Cui C, Gu Y, Ping D, Harada H (2009) Microstructural evolution and mechanical properties of a Ni-based superalloy, tmw-4. Metall Mater Trans A 40(2):282–291 Dima A, Bhaskarla S, Becker C, Brady M, Campbell C, Dessauw P, Hanisch R, Kattner U, Kroenlein K, Newrock M, et al (2016) Informatics infrastructure for the materials genome initiative. JOM 68(8):2053–2064 Du Q, Poole W, Wells M (2012) A mathematical model coupled to calphad to predict precipitation kinetics for multicomponent aluminum alloys. Acta Mater 60(9):3830–3839 Dupin N, Sundman B (2001) A thermodynamic database for Ni-base superalloys. Scand J Metall 30 (3):184–192 Estrin Y (2007) Constitutive modelling of creep of metallic materials: some simple recipes. Mater Sci Eng A 463(1):171–176 Estrin Y, Mecking H (1984) A unified phenomenological description of work hardening and creep based on one-parameter models. Acta Metall 32(1):57–70 Fast T, Kalidindi SR (2011) Formulation and calibration of higher-order elastic localization relationships using the MKS approach. Acta Mater 59(11):4595–4605 Fast T, Niezgoda SR, Kalidindi SR (2011) A new framework for computationally efficient structure–structure evolution linkages to facilitate high-fidelity scale bridging in multi-scale materials models. Acta Mater 59(2):699–707 Fisher E (1986) On the elastic moduli of nickel rich Ni–Al alloy single crystals. Scr Metall 20(2):279–284 Froemming NS, Henkelman G (2009) Optimizing core-shell nanoparticle catalysts with a genetic algorithm. J Chem Phys 131(23):234,103 Fromm BS, Chang K, McDowell DL, Chen LQ, Garmestani H (2012) Linking phase-field and finite-element modeling for process–structure–property relations of a Ni-base superalloy. Acta Mater 60(17):5984–5999 Frost HJ, Ashby MF (1982) Deformation mechanism maps: the plasticity and creep of metals and ceramics. Oxford Gheribi A, Audet C, Le Digabel S, Bélisle E, Bale C, Pelton A (2012) Calculating optimal conditions for alloy and process design using thermodynamic and property databases, the factsage software and the mesh adaptive direct search algorithm. Calphad 36:135–143 Goldberg D (1989) Genetic algorithms in search, optimization, and machine learning. Addison-Wesley Gopinath K, Gogia A, Kamat S, Balamuralikrishnan R, Ramamurty U (2008) Tensile properties of Ni-based superalloy 720li: temperature and strain rate effects. Metall Mater Trans A 39(10):2340–2350 Hertelé S, De Waele W, Denys R (2011) A generic stress–strain model for metallic materials with two-stage strain hardening behaviour. Int J Non Linear Mech 46(3):519–531 Huang M, Rivera-Díaz-del-Castillo P, Bouaziz O, van der Zwaag S (2008) Irreversible thermodynamics modelling of plastic deformation of metals. Mater Sci Technol 24(4):495–500 Huang M, Rivera-Díaz-del-Castillo P, Van Der Zwaag S (2007) Modelling steady state deformation of fcc metals by non-equilibrium thermodynamics. Mater Sci Technol 23(9):1105–1108 Ikeda Y (1997) A new method of alloy design using a genetic algorithm. Mater Trans JIM 38(9):771–779 Jablonski PD, Cowen CJ (2009) Homogenizing a nickel-based superalloy: thermodynamic and kinetic simulation and experimental results. Metall Mater Trans B 40(2):182–186 Jha R, Pettersson F, Dulikravich G, Saxen H, Chakraborti N (2015) Evolutionary design of nickel-based superalloys using data-driven genetic algorithms and related strategies. Mater Manuf Process 30(4):488–510 Jones E, Oliphant T, Peterson P (2014) {SciPy}: Open source scientific tools for {Python}. https://doi.org/10.6084/m9.figshare.1015761 Jou HJ, Voorhees P, Olson GB (2004) Computer simulations for the prediction of microstructure/property variation in aeroturbine disks. Superalloys 2004:877–886 Kalidindi SR (1998) Modeling the strain hardening response of low sfe fcc alloys. Int J Plast 14(12):1265–1277 Kalidindi SR (2012) Computationally efficient, fully coupled multiscale modeling of materials phenomena using calibrated localization linkages. International Scholarly Research Notices 2012 Kar SK, Sondhi S (2014) Microstructure based and temperature dependent model of flow behavior of a polycrystalline nickel based superalloy. Mater Sci Eng A 601:97–105 Keshavarz S, Ghosh S (2015) Hierarchical crystal plasticity fe model for nickel-based superalloys: sub-grain microstructures to polycrystalline aggregates. Int J Solids Struct 55:17–31 Kozar R, Suzuki A, Milligan W, Schirra J, Savage M, Pollock T (2009) Strengthening mechanisms in polycrystalline multimodal nickel-base superalloys. Metall Mater Trans A 40(7):1588–1603 Kuehmann C, Olson G (2009) Computational materials design and engineering. Mater Sci Technol 25 (4):472–478 Kumar R, Wang AJ, McDowell D (2006) Effects of microstructure variability on intrinsic fatigue resistance of nickel-base superalloys–a computational micromechanics approach. Int J Fract 137(1-4):173–210 Li S, Honarmandi P, Arróyave R, Rivera-Díaz-del-Castillo P (2015) Describing the deformation behaviour of trip and dual phase steels employing an irreversible thermodynamics formulation. Mater Sci Technol 31(13):1658–1663 Li X, Saunders N, Miodownik A (2002) The coarsening kinetics of γ particles in nickel-based alloys. Metall Mater Trans A 33(11):3367–3373 Lv X, Sun F, Tong J, Feng Q, Zhang J (2015) Paired dislocations and their interactions with γ particles in polycrystalline superalloy gh4037. J Mater Eng Perform 24(1):143–148 Mahfouf M, Jamei M, Linkens D (2005) Optimal design of alloy steels using multiobjective genetic algorithms. Mater Manuf Process 20(3):553–567 McQueen H, Ryan N (2002) Constitutive analysis in hot working. Mater Sci Eng A 322(1):43–63 Mecking H, Kocks U (1981) Kinetics of flow and strain-hardening. Acta Metall 29(11):1865–1875 Menou E, Ramstein G, Bertrand E, Tancret F (2016) Multi-objective constrained design of nickel-base superalloys using data mining-and thermodynamics-driven genetic algorithms. Model Simul Mater Sci Eng 24 (5):055,001 Miodownik AP, Saunders N (1995) Applications of thermodynamics in the synthesis and processing of materials. TMS Mishima Y, Ochiai S, Hamao N, Yodogawa M, Suzuki T (1986) Solid solution hardening of nickel: role of transition metal and b-subgroup solutes. Trans Jpn Inst Metals 27(9):656–664 Musinski WD, McDowell DL (2015) On the eigenstrain application of shot-peened residual stresses within a crystal plasticity framework: application to Ni-base superalloy specimens. Int J Mech Sci 100:195–208 Nishizawa T, Ohnuma I, Ishida K (2001) Correlation between interfacial energy and phase diagram in ceramic-metal systems. J Phase Equilib 22(3):269–275 Olson G (2013) Genomic materials design: the ferrous frontier. Acta Mater 61(3):771–781 Olson GB, Jou H-J, Jung J, Sebastian JT, Misra A, Locci I, Hull D (2008) Precipitation model validation in 3rd generation aeroturbine disc alloys. In: Superalloys, 2008. TMS, pp 923–932 Olson GB (1997) Computational design of hierarchically structured materials. Science 277(5330):1237–1242 Perez M, Dumont M, Acevedo-Reyes D (2008) Implementation of classical nucleation and growth theories for precipitation. Acta Mater 56(9):2119–2132 Philippe T, Voorhees P (2013) Ostwald ripening in multicomponent alloys. Acta Mater 61(11):4237–4244 Radis R, Schaffer M, Albu M, Kothleitner G, Pölt P, Kozeschnik E (2009) Multimodal size distributions of γ precipitates during continuous cooling of UDIMET 720 Li. Acta Mater 57(19):5739–5747 Reed R, Tao T, Warnken N (2009) Alloys-by-design: application to nickel-based single crystal superalloys. Acta Mater 57(19):5898–5913 Reed RC (2006) The superalloys. Cambridge University Press Rettig R, Ritter NC, Helmer HE, Neumeier S, Singer RF (2015) Single-crystal nickel-based superalloys developed by numerical multi-criteria optimization techniques: design based on thermodynamic calculations and experimental validation. Model Simul Mater Sci Eng 23(3):035,004 Rivera-Díaz-del-Castillo P, Hayashi K, Galindo-Nava E (2013) Computational design of nanostructured steels employing irreversible thermodynamics. Mater Sci Technol 29(10):1206–1211 Roth H, Davis C, Thomson R (1997) Modeling solid solution strengthening in nickel alloys. Metall Mater Trans A 28(6):1329–1335 Rougier L, Jacot A, Gandin CA, Di Napoli P, Théry PY, Ponsen D, Jaquet V (2013) Numerical simulation of precipitation in multicomponent Ni-base alloys. Acta Mater 61(17):6396–6405 Rudolph G (1994) Convergence analysis of canonical genetic algorithms. IEEE Trans Neural Netw 5(1):96–101 Russell KC (1980) Nucleation in solids: the induction and steady state effects. Adv Colloid Interf Sci 13 (3):205–318 Saal JE, Kirklin S, Aykol M, Meredig B, Wolverton C (2013) Materials design and discovery with high-throughput density functional theory: the open quantum materials database (OQMD). JOM 65(11):1501–1509 Samanta B, Al-Balushi KR, Al-Araimi SA (2006) Artificial neural networks and genetic algorithm for bearing fault detection. Soft Comput 10(3):264–271 Saunders N, Fahrmann M, Small CJ (2000) The application of calphad calculations to Ni-based superalloys. ROLLS ROYCE PLC-REPORT-PNR 803–811 Saunders N, Guo U, Li X, Miodownik A, Schillé JP (2003) Using JMatPro to model materials properties and behavior. JOM 55(12):60–65 Senecal PK (2000) Numerical optimization using the GEN4 micro-genetic algorithm code. University of Wisconsin-Madison Sinclair C, Poole W, Bréchet Y (2006) A model for the grain size dependent work hardening of copper. Scr Mater 55(8):739–742 Smallman RE, Bishop RJ (1999) Modern physical metallurgy and materials engineering. Butterworth-Heinemann Sudbrack CK, Ziebell TD, Noebe RD, Seidman DN (2008) Effects of a tungsten addition on the morphological evolution, spatial correlations and temporal evolution of a model Ni–Al–Cr superalloy. Acta Mater 56(3):448–463 Svoboda J, Fischer F, Fratzl P, Kozeschnik E (2004) Modelling of kinetics in multi-component multi-phase systems with spherical precipitates: i: theory. Mater Sci Eng A 385(1):166–174 Tancret F (2012) Computational thermodynamics and genetic algorithms to design affordable γ-strengthened nickel–iron based superalloys. Model Simul Mater Sci Eng 20(4):045,012 Tancret F (2013) Computational thermodynamics, gaussian processes and genetic algorithms: combined tools to design new alloys. Model Simul Mater Sci Eng 21(4):045,013 TCNI6 Ni-based superalloy database. Themo-Calc Software AB, Stockholm, Sweden (2013) Thomas A, El-Wahabi M, Cabrera J, Prado J (2006) High temperature deformation of Inconel 718. J Mater Process Technol 177(1):469–472 Thompson AA (1975) Yielding in nickel as a function of grain or cell size. Acta Metall 23(11):1337–1342 Tiley J, Viswanathan G, Srinivasan R, Banerjee R, Dimiduk D, Fraser H (2009) Coarsening kinetics of γ precipitates in the commercial nickel base superalloy rené 88 dt. Acta Mater 57(8):2538–2549 Vattré A, Devincre B, Feyel F, Gatti R, Groh S, Jamond O, Roos A (2014) Modelling crystal plasticity by 3d dislocation dynamics and the finite element method: the discrete-continuous model revisited. J Mech Phys Solids 63:491–505 Vattré A, Devincre B, Roos A (2009) Dislocation dynamics simulations of precipitation hardening in Ni-based superalloys with high γ volume fraction. Intermetallics 17(12):988–994 Wagner R, Kampmann R, Voorhees PW (2001) Homogeneous second-phase precipitation. Phase Transformations in Materials 309–407 Wang Y, Shao WZ, Zhen L, Yang L, Zhang XM (2008) Flow behavior and microstructures of superalloy 718 during high temperature deformation. Mater Sci Eng A 497(1):479–486 Wen DX, Lin Y, Li HB, Chen XM, Deng J, Li LT (2014) Hot deformation behavior and processing map of a typical Ni-based superalloy. Mater Sci Eng A 591:183–192 Wheeler D, Brough D, Fast T, Kalidindi S, Reid A (2014) Pymks: materials knowledge system in python. Figshare. https://doi.org/10.6084/m9.figshare.1015761 Wu HY, Sun PH, Zhu FJ, Wang SC, Wang WR, Wang CC, Chiu CH (2012) Tensile flow behavior in Inconel 600 alloy sheet at elevated temperatures. Procedia Engineering 36:114– 120 Wu HY, Zhu FJ, Wang SC, Wang WR, Wang CC, Chiu CH (2012) Hot deformation characteristics and strain-dependent constitutive analysis of Inconel 600 superalloy. J Mater Sci 47(9):3971–3981 Zhang P, Hu C, Ding CG, Zhu Q, Qin HY (2015) Plastic deformation behavior and processing maps of a ni-based superalloy. Mater Des 65:575–584 Zhang T, Collins DM, Dunne FP, Shollock BA (2014) Crystal plasticity and high-resolution electron backscatter diffraction analysis of full-field polycrystal ni superalloy strains and rotations under thermal loading. Acta Mater 80:25–38 Zhou H, Cen K, Fan J (2004) Modeling and optimization of the nox emission characteristics of a tangentially fired boiler with artificial neural networks. Energy 29(1):167–183