A Comprehensive Review of the Nutraceutical and Therapeutic Applications of Red Seaweeds (Rhodophyta)
Tóm tắt
The red seaweed group (Rhodophyta) is one of the phyla of macroalgae, among the groups Phaeophyceae and Chlorophyta, brown and green seaweeds, respectively. Nowadays, all groups of macroalgae are getting the attention of the scientific community due to the bioactive substances they produce. Several macroalgae products have exceptional properties with nutraceutical, pharmacological, and biomedical interest. The main compounds studied are the fatty acids, pigments, phenols, and polysaccharides. Polysaccharides are the most exploited molecules, which are already widely used in various industries and are, presently, entering into more advanced applications from the therapeutic point of view. The focuses of this review are the red seaweeds’ compounds, its proprieties, and its uses. Moreover, this work discusses new possible applications of the compounds of the red seaweeds.
Từ khóa
Tài liệu tham khảo
Leandro, A., Pereira, L., and Gonçalves, A.M.M. (2020). Diverse applications of marine macroalgae. Mar. Drugs, 18.
Francavilla, 2013, The Red Seaweed Gracilaria gracilis as a Multi Products Source, Mar. Drugs, 11, 3754, 10.3390/md11103754
Giordano, 2005, CO2 concentrating mechanisms in algae: Mechanisms, environmental modulation, and evolution, Annu. Rev. Plant Biol., 56, 99, 10.1146/annurev.arplant.56.032604.144052
Villanueva, 2014, Health-promoting effects in the gut and influence on lipid metabolism of Himanthalia elongata and Gigartina pistillata in hypercholesterolaemic Wistar rats, Eur. Food Res. Technol., 238, 409, 10.1007/s00217-013-2116-5
Tanna, 2018, Metabolites unravel nutraceutical potential of edible seaweeds: An emerging source of functional food, Compr. Rev. Food Sci. Food Saf., 17, 1613, 10.1111/1541-4337.12396
Ledesma-Hernandez, B., and Herrero, M. (2013). Sterols in algae and health. Bioactive Compounds from Marine Foods: Plant and Animal Sources, John Wiley & Sons, Ltd.
Alves, C., Silva, J., Pinteus, S., Gaspar, H., Alpoim, M.C., Botana, L.M., and Pedrosa, R. (2018). From marine origin to therapeutics: The antitumor potential of marine algae-derived compounds. Front. Pharmacol., 9.
Choudhary, 2012, Development of functional food products in relation to obesity, Funct. Foods Health Dis., 2, 188, 10.31989/ffhd.v2i6.90
Ding, Y., Wang, L., Im, S., Hwang, O., Kim, H.-S., Kang, M.-C., and Lee, S.-H. (2019). Anti-Obesity Effect of Diphlorethohydroxycarmalol Isolated from Brown Alga Ishige okamurae in High-Fat Diet-Induced Obese Mice. Mar. Drugs, 17.
Kim, 2011, Nutritional and digestive health benefits of seaweed, Advances in Food and Nutrition Research, Volume 64, 17, 10.1016/B978-0-12-387669-0.00002-8
2011, Seaweed minerals as nutraceuticals, Adv. Food Nutr. Res., 64, 371, 10.1016/B978-0-12-387669-0.00029-6
Shannon, 2019, Seaweeds as nutraceuticals for health and nutrition, Phycologia, 58, 563, 10.1080/00318884.2019.1640533
Jung, 2013, Potentials of macroalgae as feedstocks for biorefinery, Bioresour. Technol., 135, 182, 10.1016/j.biortech.2012.10.025
Villasante, 2017, Unravelling the potential of halophytes for marine integrated multi-trophic aquaculture (IMTA)- A perspective on performance, opportunities and challenges, Aquac. Environ. Interact., 9, 445, 10.3354/aei00244
FAO (2018). The State of World Fisheries and Aquaculture 2018—Meeting the Sustainable Development Goals, FAO.
Ferdouse, 2018, The global status of seaweed production, trade and utilization, FAO Globefish Res. Program., 124, 120
Barry, 2015, Strategies for optimizing algal biology for enhanced biomass production, Front. Energy Res., 3, 1, 10.3389/fenrg.2015.00001
Michalak, 2015, Algae as production systems of bioactive compounds, Eng. Life Sci., 15, 160, 10.1002/elsc.201400191
Michalak, 2014, Algal extracts: Technology and advances, Eng. Life Sci., 14, 581, 10.1002/elsc.201400139
Galloway, 2012, Fatty acid signatures differentiate marine macrophytes at ordinal and family ranks, J. Phycol., 48, 956, 10.1111/j.1529-8817.2012.01173.x
Hayes, 2012, Extraction and characterization of bioactive compounds with health benefits from marine resources: Macro and micro algae, cyanobacteria, and invertebrates, Marine Bioactive Compounds, Volume 9781461412, 55
Halim, 2012, Extraction of oil from microalgae for biodiesel production: A review, Biotechnol. Adv., 30, 709, 10.1016/j.biotechadv.2012.01.001
Michalak, 2018, Experimental processing of seaweeds for biofuels, Wiley Interdiscip. Rev. Energy Environ., 7, 1
Catala, A. (2017). Fatty acids’ profiles of aquatic organisms: Revealing the impacts of environmental and anthropogenic stressors. Fatty Acids, IntechOpen.
Diniz, 2018, Fatty acid composition from the marine red algae Pterocladiella capillacea (S. G. gmelin) Santelices & Hommersand 1997 and Osmundaria obtusiloba (C. agardh) R. E. Norris 1991 and its antioxidant activity, An. Acad. Bras. Cienc., 90, 449, 10.1590/0001-3765201820160315
Kendel, 2015, Lipid composition, fatty acids and sterols in the seaweeds ulva armoricana, and solieria chordalis from brittany (france): An analysis from nutritional, chemotaxonomic, and antiproliferative activity perspectives, Mar. Drugs, 13, 5606, 10.3390/md13095606
Monroig, 2013, Biosynthesis of polyunsaturated fatty acids in marine invertebrates: Recent advances in molecular mechanisms, Mar. Drugs, 11, 3998, 10.3390/md11103998
Pereira, 2012, Polyunsaturated fatty acids of marine macroalgae: Potential for nutritional and pharmaceutical applications, Mar. Drugs, 10, 1920, 10.3390/md10091920
Tejera, 2017, Significance of long chain polyunsaturated fatty acids in human health, Clin. Transl. Med., 6, 25, 10.1186/s40169-017-0153-6
Simopoulos, 2002, The importance of the ratio of omega-6/omega-3 essential fatty acids, Biomed. Pharmacother., 56, 365, 10.1016/S0753-3322(02)00253-6
Xu, 2015, Rapid screening of chemical compositions of gracilaria dura and hypnea mucisformis (rhodophyta) from corsican lagoon, Int. J. Phytocosmetics Nat. Ingredients, 2, 8, 10.15171/ijpni.2015.08
2012, Analysis and characterization of methyl esters of fatty acids of some Gracilaria species, Biochem. Syst. Ecol., 44, 303, 10.1016/j.bse.2012.02.006
Santos, 2015, Chlorophyta and Rhodophyta macroalgae: A source of health promoting phytochemicals, Food Chem., 183, 122, 10.1016/j.foodchem.2015.03.006
Oren, 2007, Mycosporines and mycosporine-like amino acids: UV protectants or multipurpose secondary metabolites?, FEMS Microbiol. Lett., 269, 1, 10.1111/j.1574-6968.2007.00650.x
Christaki, 2013, Functional properties of carotenoids originating from algae, J. Sci. Food Agric., 93, 5, 10.1002/jsfa.5902
Ledesma-Hernandez, B., and Herrero, M. (2013). Bioactive Compounds from Marine Foods: Plant and Animal Sources, John Wiley & Sons, Ltd.
Lopes, 2011, Sterol profiles in 18 macroalgae of the Portuguese coast, J. Phycol., 47, 1210, 10.1111/j.1529-8817.2011.01028.x
Perveen, S. (2018). Introductory Chapter: Terpenes and Terpenoids. Terpenes and Terpenoids, IntechOpen.
Mydland, 2019, Marine macroalgae as sources of protein and bioactive compounds in feed for monogastric animals, J. Sci. Food Agric., 99, 13, 10.1002/jsfa.9143
Wright, 2003, Three New Sesquiterpenes from the Red Alga Laurencia perforata, J. Nat. Prod., 66, 435, 10.1021/np020274v
Suzuki, 2002, Brominated metabolites from an Okinawan Laurencia intricata, Phytochemistry, 60, 861, 10.1016/S0031-9422(02)00151-6
Brito, 2002, Oxachamigrenes, New Halogenated Sesquiterpenes from Laurencia obtusa, J. Nat. Prod., 65, 946, 10.1021/np010580t
Iliopoulou, 2002, Halogenated sesquiterpenes from the red alga Laurencia obtusa, Tetrahedron, 58, 6749, 10.1016/S0040-4020(02)00687-7
Fuller, 1992, A Pentahalogenated monoterpene from the red alga portieria hornemannii produces a novel cytotoxicity profile against a diverse panel of human tumor cell lines, J. Med. Chem., 35, 3007, 10.1021/jm00094a012
Darias, 2001, Furoplocamioids A−C, novel polyhalogenated furanoid monoterpenes from plocamium cartilagineum, J. Nat. Prod., 64, 1383, 10.1021/np010297u
Etahiri, 2001, New bromoditerpenes from the red alga Sphaerococcus coronopifolius, J. Nat. Prod., 64, 1024, 10.1021/np0002684
Smyrniotopoulos, 2010, Ioniols I and II, tetracyclic diterpenes with antibacterial activity, from Sphaerococcus coronopifolius, Chem. Biodivers., 7, 666, 10.1002/cbdv.200900026
Smyrniotopoulos, 2010, Structure and antibacterial activity of brominated diterpenes from the red alga Sphaerococcus coronopifolius, Chem. Biodivers., 7, 186, 10.1002/cbdv.200800309
Rodrigues, 2015, Antitumor and antimicrobial potential of bromoditerpenes isolated from the red alga, Sphaerococcus coronopifolius, Mar. Drugs, 13, 713, 10.3390/md13020713
Smyrniotopoulos, 2010, Structure and in vitro antitumor activity evaluation of brominated diterpenes from the red alga Sphaerococcus coronopifolius, Bioorg. Med. Chem., 18, 1321, 10.1016/j.bmc.2009.12.025
Pec, 2003, Induction of apoptosis in estrogen dependent and independent breast cancer cells by the marine terpenoid dehydrothyrsiferol, Biochem. Pharmacol., 65, 1451, 10.1016/S0006-2952(03)00123-0
Carreto, 2011, Mycosporine-like amino acids: Relevant secondary metabolites. chemical and ecological aspects, Mar. Drugs, 9, 387, 10.3390/md9030387
Wada, 2015, Mycosporine-like amino acids and their derivatives as natural antioxidants, Antioxidants, 4, 603, 10.3390/antiox4030603
Conde, 2004, The deactivation pathways of the excited-states of the mycosporine-like amino acids shinorine and porphyra-334 in aqueous solution, Photochem. Photobiol. Sci., 3, 960, 10.1039/b405782a
(2020, January 23). Ingredients & Formulas | SEPPIC. Available online: https://www.seppic.com/ingredients-formulas.
Lawrence, 2018, Mycosporine-like amino acids for skin photoprotection, Curr. Med. Chem., 25, 5512, 10.2174/0929867324666170529124237
Briani, 2018, The influence of environmental features in the content of mycosporine-like amino acids in red marine algae along the Brazilian coast, J. Phycol., 54, 380, 10.1111/jpy.12640
Chrapusta, E., Kaminski, A., Duchnik, K., Bober, B., Adamski, M., and Bialczyk, J. (2017). Mycosporine-like amino acids: Potential health and beauty ingredients. Mar. Drugs, 15.
Yuan, 2009, Mycosporine-like amino acid composition of the edible red alga, Palmaria palmata (dulse) harvested from the west and east coasts of Grand Manan Island, New Brunswick, Food Chem., 112, 321, 10.1016/j.foodchem.2008.05.066
Reef, R., Kaniewska, P., and Hoegh-Guldberg, O. (2009). Coral skeletons defend against ultraviolet radiation. PLoS ONE, 4.
Bourgougnon, 2014, Bioactive components from seaweeds: Cosmetic applications and future development, Advances in Botanical Research, Volume 71, 345, 10.1016/B978-0-12-408062-1.00012-3
Harnedy, 2011, Bioactive proteins, peptides, and amino acids from macroalgae, J. Phycol., 47, 218, 10.1111/j.1529-8817.2011.00969.x
Torres, M.D., Flórez-Fernández, N., and Domínguez, H. (2019). Integral utilization of red seaweed for bioactive production. Mar. Drugs, 17.
Ganesan, 2019, Seaweed nutraceuticals and their therapeutic role in disease prevention, Food Sci. Hum. Wellness, 8, 252, 10.1016/j.fshw.2019.08.001
Vieira, 2018, Seaweeds from the Portuguese coast as a source of proteinaceous material: Total and free amino acid composition profile, Food Chem., 269, 264, 10.1016/j.foodchem.2018.06.145
Abirami, 2012, Phytochemical screening, microbial load and antimicrobial activity of underexploited seaweeds, Int. Res. J. Microbiol., 3, 328
Murata, 2001, Production and Use of Marine AIgae in Japan, Japan Agric. Res. Q. JARQ, 35, 281
Bhatia, 2015, Structural characterization and pharmaceutical properties of porphyran, Asian J. Pharm., 9, 93, 10.4103/0973-8398.154698
Aditya, 2018, The role of algae in pharmaceutical development, Res. Rev. J. Pharm. Nanotechnol., 4, 82
Smit, 2004, Medicinal and pharmaceutical uses of seaweed natural products: A review, J. Appl. Phycol., 16, 245, 10.1023/B:JAPH.0000047783.36600.ef
Pereira, L. (2018). Seaweeds as source of bioactive substances and skin care therapy—cosmeceuticals, algotheraphy, and thalassotherapy. Cosmetics, 5.
Pal, 2014, Bioactive compounds and properties of seaweeds—A review, OALib, 1, 1, 10.4236/oalib.1100752
Ara, 2002, Hypolipidaemic activity of seaweed from Karachi coast, Phyther. Res., 16, 479, 10.1002/ptr.909
Urbano, 2002, Bioavailability of nutrients in rats fed on edible seaweeds, Nori (Porphyra tenera) and Wakame (Undaria pinnatifida), as a source of dietary fibre, Food Chem., 76, 281, 10.1016/S0308-8146(01)00273-4
Joubert, 2008, Simultaneous extraction of proteins and DNA by an enzymatic treatment of the cell wall of Palmaria palmata (Rhodophyta), J. Appl. Phycol., 20, 55, 10.1007/s10811-007-9180-9
Bleakley, S., and Hayes, M. (2017). Algal proteins: Extraction, application, and challenges concerning production. Foods, 6.
Stengel, 2011, Algal chemodiversity and bioactivity: Sources of natural variability and implications for commercial application, Biotechnol. Adv., 29, 483, 10.1016/j.biotechadv.2011.05.016
Zubia, 2014, Photosynthesis, pigment composition and antioxidant defences in the red alga Gracilariopsis tenuifrons (Gracilariales, Rhodophyta) under environmental stress, J. Appl. Phycol., 26, 2001, 10.1007/s10811-014-0325-3
Takaichi, 2011, Carotenoids in algae: Distributions, biosyntheses and functions, Mar. Drugs, 9, 1101, 10.3390/md9061101
Sydney, 2019, Biomolecules from extremophile microalgae: From genetics to bioprocessing of a new candidate for large-scale production, Process Biochem., 87, 37, 10.1016/j.procbio.2019.09.012
Solymosi, 2017, Phycobilins and phycobiliproteins used in food industry and medicine, Mini Rev. Med. Chem., 17, 1, 10.2174/1389557516666161004161411
Bryant, D.A. (1994). Phycobilisome and phycobiliprotein structures. The Molecular Biology of Cyanobacteria, Springer.
Viera, I., Pérez-Gálvez, A., and Roca, M. (2018). Bioaccessibility of Marine Carotenoids. Mar. Drugs, 16.
Korbee, 2019, Effects of UV radiation on photosynthesis, antioxidant capacity and the accumulation of bioactive compounds in gracilariopsis longissima, hydropuntia cornea and halopithys incurva (Rhodophyta), J. Phycol., 1273, 1258
Zepeda, 2020, Nutraceutical assessment of Solieria filiformis and Gracilaria cornea (Rhodophyta) under light quality modulation in culture, J. Appl. Phycol., 2020, 1
Nguyen, 2019, Purification of R-phycoerythrin from a marine macroalga Gracilaria gracilis by anion-exchange chromatography, J. Appl. Phycol., 2019, 1
Yu, 2017, Purification and bioactivities of phycocyanin, Crit. Rev. Food Sci. Nutr., 57, 3840, 10.1080/10408398.2016.1167668
Bourgougnon, 2014, Phycoerythrins: Valuable proteinic pigments in red seaweeds, Advances in Botanical Research, Volume 71, 321, 10.1016/B978-0-12-408062-1.00011-1
Adir, 2005, Elucidation of the molecular structures of components of the phycobilisome: Reconstructing a giant, Photosynth. Res., 85, 15, 10.1007/s11120-004-2143-y
Mullineaux, 2008, Phycobilisome-reaction centre interaction in cyanobacteria, Photosynth. Res., 95, 175, 10.1007/s11120-007-9249-y
Eriksen, 2008, Production of phycocyanin—A pigment with applications in biology, biotechnology, foods and medicine, Appl. Microbiol. Biotechnol., 80, 1, 10.1007/s00253-008-1542-y
Lee, 2017, Anti-inflammatory effects of dulse (Palmaria palmata) resulting from the simultaneous water-extraction of phycobiliproteins and chlorophyll a, Food Res. Int., 100, 514, 10.1016/j.foodres.2017.06.040
Neefus, 2007, An improved method for estimating R-phycoerythrin and R-phycocyanin contents from crude aqueous extracts of Porphyra (Bangiales, Rhodophyta), J. Appl. Phycol., 19, 123, 10.1007/s10811-006-9118-7
Wang, L., Wang, S., Fu, X., and Sun, L. (2015). Characteristics of an R-Phycoerythrin with Two γ Subunits Prepared from Red Macroalga Polysiphonia urceolata. PLoS ONE, 10.
Malairaj, 2016, Qualitative and quantitative determination of R-phycoerythrin from Halymenia floresia (Clemente) C. Agardh by polyacrylamide gel using electrophoretic elution technique, J. Chromatogr. A, 1454, 120, 10.1016/j.chroma.2016.05.063
Pina, 2014, An evaluation of edible red seaweed (Chondrus crispus) components and their modification during the cooking process, LWT Food Sci. Technol., 56, 175, 10.1016/j.lwt.2013.08.006
Sukwong, 2019, R-phycoerythrin, R-phycocyanin and ABE production from Gelidium amansii by Clostridium acetobutylicum, Process Biochem., 81, 139, 10.1016/j.procbio.2019.03.023
Munier, 2015, One-step purification of R-phycoerythrin from the red edible seaweed Grateloupia turuturu, J. Chromatogr. B Anal. Technol. Biomed. Life Sci., 992, 23, 10.1016/j.jchromb.2015.04.012
Holzwarth, 1991, Structure-function relationships and energy transfer in phycobiliprotein antennae, Physiol. Plant., 83, 518, 10.1111/j.1399-3054.1991.tb00129.x
Zhang, 1999, A simple method for efficient separation and purification of c-phycocyanin and allophycocyanin from Spirulina platensis, Biotechnol. Tech., 13, 601, 10.1023/A:1008914405302
Xia, 2001, Two-photon fluorescence from recombinant green fluorescent protein, Guang Pu Xue Yu Guang Pu Fen Xi, 21, 435
Pardhasaradhi, 2003, Phycocyanin-mediated apoptosis in AK-5 tumor cells involves down-regulation of Bcl-2 and generation of ROS, Mol. Cancer Ther., 2, 1165
Jaiswal, 2008, Cyanobacterial bioactive molecules—An overview of their toxic properties, Can. J. Microbiol., 54, 701, 10.1139/W08-034
MacColl, 2004, Allophycocyanin and energy transfer, Biochim. Biophys. Acta Bioenerg., 1657, 73, 10.1016/j.bbabio.2004.04.005
Bermejo, 1997, Chromatographic purification of biliproteins from Spirulina platensis. High-performance liquid chromatographic separation of their α and β subunits, J. Chromatogr. A, 778, 441, 10.1016/S0021-9673(97)00577-3
Su, 2010, Efficient separation and purification of allophycocyanin from Spirulina (Arthrospira) platensis, J. Appl. Phycol., 22, 65, 10.1007/s10811-009-9427-8
Tavanandi, 2019, Synergistic method for extraction of high purity Allophycocyanin from dry biomass of Arthrospira platensis and utilization of spent biomass for recovery of carotenoids, Sep. Purif. Technol., 225, 97, 10.1016/j.seppur.2019.05.064
Fleurence, J., and Levine, I. (2016). Proteins and Pigments. Seaweed in Health and Disease Prevention, Elsevier.
Li, 2019, Phycobiliproteins: Molecular structure, production, applications, and prospects, Biotechnol. Adv., 37, 340, 10.1016/j.biotechadv.2019.01.008
Reddy, 2003, C-Phycocyanin, a selective cyclooxygenase-2 inhibitor, induces apoptosis in lipopolysaccharide-stimulated RAW 264.7 macrophages, Biochem. Biophys. Res. Commun., 304, 385, 10.1016/S0006-291X(03)00586-2
Shih, 2003, Inhibition of enterovirus 71-induced apoptosis by allophycocyanin isolated from a blue-green alga Spirulina platensis, J. Med. Virol., 70, 119, 10.1002/jmv.10363
Nagaraj, 2012, Hepatoprotective and antioxidative effects of C-phycocyanin from Arthrospira maxima SAG 25780 in CCl 4-induced hepatic damage rats, Biomed. Prev. Nutr., 2, 81, 10.1016/j.bionut.2011.12.001
Poojary, M.M., Barba, F.J., Aliakbarian, B., Donsì, F., Pataro, G., Dias, D.A., and Juliano, P. (2016). Innovative alternative technologies to extract carotenoids from microalgae and seaweeds. Mar. Drugs, 14.
Galasso, C., Corinaldesi, C., and Sansone, C. (2017). Carotenoids from marine organisms: Biological functions and industrial applications. Antioxidants, 6.
Canali, 2012, β-Carotene and lycopene affect endothelial response to TNF-α reducing nitro-oxidative stress and interaction with monocytes, Mol. Nutr. Food Res., 56, 217, 10.1002/mnfr.201100500
Gori, 2011, Oxidative stress and endothelial dysfunction: Therapeutic implications, Ann. Med., 43, 259, 10.3109/07853890.2010.543920
Gao, 2011, Lutein and zeaxanthin supplementation reduces H2O2-induced oxidative damage in human lens epithelial cells, Mol. Vis., 17, 3180
Parjikolaei, 2016, Valuable Biomolecules from Nine North Atlantic Red Macroalgae: Amino Acids, Fatty Acids, Carotenoids, Minerals and Metals, Nat. Resour., 7, 157
Schubert, 2006, Carotenoid composition of marine red algae, J. Phycol., 42, 1208, 10.1111/j.1529-8817.2006.00274.x
Caballero, B. (2003). Tannins and Polyphenols. Encyclopedia of Food Sciences and Nutrition, Academic Press.
Torres, 2019, A comprehensive review of traditional uses, bioactivity potential, and chemical diversity of the genus Gracilaria (Gracilariales, Rhodophyta), Algal Res., 37, 288, 10.1016/j.algal.2018.12.009
Liu, 2011, Bromophenols in Marine Algae and Their Bioactivities, Mar. Drugs, 9, 1273, 10.3390/md9071273
Whitfield, 1999, Distribution of Bromophenols in Species of Marine Algae from Eastern Australia, J. Agric. Food Chem., 47, 2367, 10.1021/jf981080h
Jacobsen, 2013, Phenolic compounds and antioxidant activities of selected species of seaweeds from Danish coast, Food Chem., 138, 1670, 10.1016/j.foodchem.2012.10.078
Souza, 2011, Antioxidant Potential of Two Red Seaweeds from the Brazilian Coasts, J. Agric. Food Chem., 59, 5589, 10.1021/jf200999n
Namvar, 2012, Polyphenol-rich seaweed (Eucheuma cottonii) extract suppresses breast tumour via hormone modulation and apoptosis induction, Food Chem., 130, 376, 10.1016/j.foodchem.2011.07.054
Cotas, 2019, The effect of salinity on Fucus ceranoides (Ochrophyta, Phaeophyceae) in the Mondego River (Portugal), J. Oceanol. Limnol., 37, 881, 10.1007/s00343-019-8111-3
Ale, 2017, Rheological properties of agar and carrageenan from Ghanaian red seaweeds, Food Hydrocoll., 63, 50, 10.1016/j.foodhyd.2016.08.023
Cardozo, 2007, Metabolites from algae with economical impact, Comp. Biochem. Physiol. Part C Toxicol. Pharmacol., 146, 60, 10.1016/j.cbpc.2006.05.007
Makkar, 2018, Antioxidative sulphated polygalactans from marine macroalgae as angiotensin-I converting enzyme inhibitors, Nat. Prod. Res., 32, 2100, 10.1080/14786419.2017.1363756
Hemmingson, 1996, Biosynthesis of agar polysaccharides in Gracilaria chilensis bird, McLachlan et Oliveira, Carbohydr. Res., 287, 101, 10.1016/0008-6215(96)00057-2
Michel, 1996, Digestive fates of soluble polysaccharides from marine macroalgae: Involvement of the colonie microflora and physiological consequences for the host, J. Appl. Bacteriol., 80, 349, 10.1111/j.1365-2672.1996.tb03230.x
Chen, 2005, The preparation and bioactivity research of agaro-oligosaccharides, Food Technol. Biotechnol., 43, 29
Valiente, 1989, Isolation and characterization of an antitumor active agar-type polysaccharide of Gracilaria dominguensis, Carbohydr. Res., 190, 77, 10.1016/0008-6215(89)84148-5
2008, Effect of alkali treatment time and extraction time on agar from Gracilaria vermiculophylla, J. Appl. Phycol., 20, 515, 10.1007/s10811-007-9258-4
Mortensen, 2016, Re-evaluation of agar (E 406) as a food additive, EFSA J., 14, e04645
Kumar, 2010, Solvent extraction and spectrophotometric determination of pigments of some algal species from the shore of Puthumadam, southeast coast of India, Int. J. Ocean. Oceanogr., 4, 29
McKim, 2016, Effects of carrageenan on cell permeability, cytotoxicity, and cytokine gene expression in human intestinal and hepatic cell lines, Food Chem. Toxicol., 96, 1, 10.1016/j.fct.2016.07.006
Pereira, 2013, Analysis by Vibrational Spectroscopy of Seaweed Polysaccharides with Potential Use in Food, Pharmaceutical, and Cosmetic Industries, Int. J. Carbohydr. Chem., 2013, 1, 10.1155/2013/537202
Amimi, 2001, Structural analysis of Gigartina pistillata carrageenans (Gigartinaceae, Rhodophyta), Carbohydr. Res., 333, 271, 10.1016/S0008-6215(01)00152-5
Amimi, 2007, Seasonal variations in thalli and carrageenan composition of Gigartina pistillata (Gmelin) Stackhouse (Rhodophyta, Gigartinales) harvested along the Atlantic coast of Morocco, Phycol. Res., 55, 143, 10.1111/j.1440-1835.2007.00457.x
Pereira, 2009, Identification of selected seaweed polysaccharides (phycocolloids) by vibrational spectroscopy (FTIR-ATR and FT-Raman), Food Hydrocoll., 23, 1903, 10.1016/j.foodhyd.2008.11.014
Younes, M., Aggett, P., Aguilar, F., Crebelli, R., Filipič, M., Frutos, M.J., Galtier, P., Gott, D., Gundert-Remy, U., and Kuhnle, G.G. (2018). Re-evaluation of carrageenan (E 407) and processed Eucheuma seaweed (E 407a) as food additives. EFSA J., 16.
Cohen, 2002, A Critical Review of the Toxicological Effects of Carrageenan and Processed Eucheuma Seaweed on the Gastrointestinal Tract, Crit. Rev. Toxicol., 32, 413, 10.1080/20024091064282
Vandamme, E.J., De Baets, S., and Steinbüchel, A. (2005). De Carrageenan. Biopolymers Online, Wiley-VCH Verlag GmbH & Co. KGaA.
Marburger, A. (2003). Alginate und Carrageenane—Eigenschaften, Gewinnung und Anwendungen in Schule und Hochschule. [Ph.D. Thesis, Philipps-Universität Marburg].
Critchley, A.T., Ohno, M., and Largo, D.B. (1998). Identification of phycocolloids by vibrational spectroscopy. World Seaweed Resources—An Authoritative Reference System, ETI Information Services Ltd.
Shanmugam, 2000, Heparinoid-active sulphated polysaccharides from marine algae as potential blood anticoagulant agents, Curr. Sci., 79, 1672
Wang, 2012, The Antiviral Activities and Mechanisms of Marine Polysaccharides: An Overview, Mar. Drugs, 10, 2795, 10.3390/md10122795
Marques, 2007, Antioxidant activities of sulfated polysaccharides from brown and red seaweeds, J. Appl. Phycol., 19, 153, 10.1007/s10811-006-9121-z
Cotas, J., Marques, V., Afonso, M.B., Rodrigues, C.M.P., and Pereira, L. (2020). Antitumour Potential of Gigartina pistillata Carrageenans against Colorectal Cancer Stem Cell-Enriched Tumourspheres. Mar. Drugs, 18.
Yu, 2015, Effect of ultrasonic treatment on the degradation and inhibition cancer cell lines of polysaccharides from Porphyra yezoensis, Carbohydr. Polym., 117, 650, 10.1016/j.carbpol.2014.09.086
Wang, J., Hou, Y., Duan, D., and Zhang, Q. (2017). The Structure and Nephroprotective Activity of Oligo-Porphyran on Glycerol-Induced Acute Renal Failure in Rats. Mar. Drugs, 15.
Liu, Z., Gao, T., Yang, Y., Meng, F., Zhan, F., Jiang, Q., and Sun, X. (2019). Anti-Cancer Activity of Porphyran and Carrageenan from Red Seaweeds. Molecules, 24.
Jiang, 2012, Inhibitory effect of sulphated polysaccharide porphyran on nitric oxide production in lipopolysaccharide-stimulated RAW264.7 macrophages, J. Biochem., 151, 65, 10.1093/jb/mvr115
Wang, 2017, In vivo antihyperlipidemic and antioxidant activity of porphyran in hyperlipidemic mice, Carbohydr. Polym., 174, 417, 10.1016/j.carbpol.2017.06.040
Inoue, 2009, The sulfated polysaccharide porphyran reduces apolipoprotein B100 secretion and lipid synthesis in HepG2 cells, Biosci. Biotechnol. Biochem., 73, 447, 10.1271/bbb.80688
Kwon, 2006, Porphyran induces apoptosis related signal pathway in AGS gastric cancer cell lines, Life Sci., 79, 1956, 10.1016/j.lfs.2006.06.031
Castillejo, 2018, Natural vitamin B12 and fucose supplementation of green smoothies with edible algae and related quality changes during their shelf life, J. Sci. Food Agric., 98, 2411, 10.1002/jsfa.8733
Kendel, 2013, Seasonal composition of lipids, fatty acids, and sterols in the edible red alga Grateloupia turuturu, J. Appl. Phycol., 25, 425, 10.1007/s10811-012-9876-3
Fenech, 2001, Vitamins/minerals and genomic stability in humans, Mutat. Res. Fundam. Mol. Mech. Mutagenesis, 475, 1, 10.1016/S0027-5107(01)00069-0
Kersting, 2001, Dietary intake and food sources of minerals in 1 to 18 year old German children and adolescents, Nutr. Res., 21, 607, 10.1016/S0271-5317(01)00262-7
Haldimann, 2005, Iodine content of food groups, J. Food Compos. Anal., 18, 461, 10.1016/j.jfca.2004.06.003
Lieu, 2001, The roles of iron in health and disease, Mol. Asp. Med., 22, 1, 10.1016/S0098-2997(00)00006-6
Puntarulo, 2005, Iron, oxidative stress and human health, Mol. Asp. Med., 26, 299, 10.1016/j.mam.2005.07.001
Maret, 2006, Zinc requirements and the risks and benefits of zinc supplementation, J. Trace Elem. Med. Biol., 20, 3, 10.1016/j.jtemb.2006.01.006
Aschner, 2005, Nutritional aspects of manganese homeostasis, Mol. Asp. Med., 26, 353, 10.1016/j.mam.2005.07.003
Roleda, 2019, Seaweed nutrient physiology: Application of concepts to aquaculture and bioremediation, Phycologia, 58, 552, 10.1080/00318884.2019.1622920
Zava, 2011, Assessment of Japanese iodine intake based on seaweed consumption in Japan: A literature-based analysis, Thyroid Res., 4, 14, 10.1186/1756-6614-4-14