A Compact Review of IPMC as Soft Actuator and Sensor: Current Trends, Challenges, and Potential Solutions From Our Recent Work

Muyu Hao1, Yanjie Wang2,1, Zicai Zhu3, Qingsong He4, Denglin Zhu2,1, Minzhou Luo2,1
1School of Mechanical and Electrical Engineering, Hohai University, Changzhou, China
2Jiangsu Key Laboratory of Special Robot Technology, Hohai University, Changzhou, China
3Jiangsu Provincial Key Laboratory of Bionic Functional Materials, Nanjing University of Aeronautics and Astronautics, Nanjing, China
4School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an, China

Tóm tắt

Từ khóa


Tài liệu tham khảo

Bahramzadeh, 2011, Dynamic curvature sensing employing ionic-polymer–metal composite sensors, Smart Mater. Struct., 20, 094011, 10.1088/0964-1726/20/9/094011

Barramba, 2007, Evaluation of dielectric gel coating for encapsulation of ionic polymer–metal composite (IPMC) actuators, Sens. Actu. A Phys., 140, 232, 10.1016/j.sna.2007.06.035

Bennett, 2004, Ionic liquids as stable solvents for ionic polymer transducers, Sensors & Actuators A Physical, 115, 79, 10.1016/j.sna.2004.03.043

Bhandari, 2012, A review on IPMC material as actuators and sensors: fabrications, characteristics and applications, Int. J. Precision Eng. Manuf., 13, 141, 10.1007/s12541-012-0020-8

Bonomo, 2005, A method to characterize the deformation of an IPMC sensing membrane, Sens. Actu. A Phys., 123, 146, 10.1016/j.sna.2005.03.012

Chang, 2012, Manufacturing process and electrode properties of palladium-electroded ionic polymer–metal composite, Smart Materials and Structures, 21, 065018, 10.1088/0964-1726/21/6/065018

Chang, 2018, Ionic polymer with single-layered electrodes: a novel strategy for ionic actuator design, Smart Mater. Struct., 27, 105046, 10.1088/1361-665X/aae00a

Chang, 2018, Radio-frequency enabled ionic polymer metal composite (IPMC) actuator for drug release application, Smart Materials and Structures, 28, 015024, 10.1088/1361-665X/aaefd3

Feng, 2018, Investigation of tactile bump array actuated with ionic polymer–metal composite cantilever beams for refreshable braille display application, Sens. Actu. A Phys., 275, 137, 10.1016/j.sna.2018.04.007

Fujiwara, 2000, Preparation of gold? Solid polymer electrolyte composites as electric stimuli-responsive materials, Chem. Mater., 12, 1750, 10.1021/cm9907357

Gudarzi, , Bending mode ionic polymer-metal composite (IPMC) pressure sensors, Measurement, 103, 250, 10.1016/j.measurement.2017.02.029

Gudarzi, , Compression and shear mode ionic polymer-metal composite (IPMC) pressure sensors, Sens. Actu. A Phys., 260, 99, 10.1016/j.sna.2017.04.010

Guo, 2007, New jellyfish type of underwater microrobot,”, International Conference on Mechatronics and Automation, 10.1109/ICMA.2007.4303595

Hamburg, 2016, Some electrochemical aspects of aqueous ionic polymer-composite actuators, Electroactive Polymer Actuators and Devices (EAPAD), 6, 979815, 10.1117/12.2219031

He, 2011, experimental study and model analysis of the performance of IPMC membranes with various thickness, J. Bionic Eng., 8, 77, 10.1016/S1672-6529(11)60001-2

Hong, 2016, Dynamics of omnidirectional IPMC sensor: experimental characterization and physical modeling, IEEE/ASME Trans. Mech., 21, 601, 10.1109/TMECH.2015.2468080

Jung, 2003, Investigations on actuation characteristics of IPMC artificial muscle actuator, Sensors & Actuators A, 107, 183, 10.1016/S0924-4247(03)00346-7

Kamamichi, 2006, A snake-like swimming robot using IPMC actuator/sensor[C], IEEE International Conference on Robotics & Automation, 10.1109/ROBOT.2006.1641969

Kim, 2012, An auto-focus lens actuator using ionic polymer metal composites: design, fabrication and control, Int. J. Prec. Eng. Manuf., 13, 1883, 10.1007/s12541-012-0247-4

Kim, 2013, Recent advances in ionic polymer–metal composite actuators and their modeling and applications, Prog. Polym. Sci., 38, 1037, 10.1016/j.progpolymsci.2013.04.003

Kim, 2002, A novel method of manufacturing three-dimensional ionic polymer–metal composites (IPMCs) biomimetic sensors, actuators and artificial muscles, Polymer, 43, 797, 10.1016/S0032-3861(01)00648-6

Kim, 2003, Ionic polymer–metal composites: II. Manufacturing techniques, Smart Mater. Struct., 12, 65, 10.1088/0964-1726/12/1/308

Kim, 2008, Palladium buffer-layered high performance ionic polymer–metal composites, Smart Mater. Struct., 17, 035011, 10.1088/0964-1726/17/3/035011

Konyo, 2004, Development of velocity sensor using ionic polymer-metal composites, Proc. SPIE— Int. Soc. Opt. Eng., 5385, 307, 10.1117/12.540266

Krishen, 2009, Space applications for ionic polymer-metal composite sensors, actuators, and artificial muscles, Acta Astronaut., 64, 1160, 10.1016/j.actaastro.2009.01.008

Lee, 2005, Water uptake and migration effects of electroactive ion-exchange polymer metal composite (IPMC) actuator, Sensors & Actuators A Physical, 118, 98, 10.1016/j.sna.2004.07.001

Ma, 2009, Morphology and properties of Nafion membranes prepared by solution casting, Polymer, 50, 1764, 10.1016/j.polymer.2009.01.060

Millet, 1995, Preparation of solid polymer electrolyte composites: investigation of the precipitation process, Journal of applied electrochemistry, 25, 233, 10.1007/BF00262961

Mojarrad, 1997, Biomimetic robotic propulsion using polymeric artificial muscles[C], IEEE International Conference on Robotics & Automation, 10.1109/ROBOT.1997.619281

Nemat-Nasser, 2006, Effect of solvents on the chemical and physical properties of ionic polymer-metal composites, J. Appl. Phys., 99, 51, 10.1063/1.2194127

Noh, 2002, Electrochemical characterization of polymer actuator with large interfacial area, Electrochim. Acta, 47, 2341, 10.1016/S0013-4686(02)00089-0

Oh, 2008, Biomimetic nano-composite actuators based on carbon nanotubes and ionic polymers, J. Intell. Mater. Syst. Struct., 19, 305, 10.1177/1045389X07083125

Palmre, 2012, An IPMC-enabled bio-inspired bending/twisting fin for underwater applications, Smart Mater. Struct., 22, 014003, 10.1088/0964-1726/22/1/014003

Ru, 2016, Preparation and characterization of water-soluble carbon nanotube reinforced Nafion membranes and so-based ionic polymer metal composite actuators, Smart Mater. Struct., 25, 095006, 10.1088/0964-1726/25/9/095006

Schmidt-Rohr, 2008, Parallel cylindrical water nanochannels in Nafion fuel-cell membranes, Nat. Mater., 7, 75, 10.1038/nmat2074

Shahinpoor, 2003, Mechanoelectrical phenomena in ionic polymers, Mathematics and Mechanics of Solids, 8, 281, 10.1177/1081286503008003003

Shahinpoor, 1998, Some experimental results on ionic polymer-metal composites (IPMC) as biomimetic sensors and actuators, Smart Struct. Mater., 1998, 251, 10.1117/12.316870

Shahinpoor, 2002, Novel ionic polymer–metal composites equipped with physically loaded particulate electrodes as biomimetic sensors, actuators and artificial muscles, Sens. Actu. A Phys., 96, 125, 10.1016/S0924-4247(01)00777-4

Shahinpoor, 2005, Ionic polymer–metal composites: IV. Industrial and medical applications, Smart Mater. Struct., 14, 197, 10.1088/0964-1726/14/1/020

Shen, 2015, A biomimetic underwater vehicle actuated by waves with ionic polymer-metal composite soft sensors, Bioinspir. Biomim., 10, 055007, 10.1088/1748-3190/10/5/055007

Takenaka, 1982, Solid polymer electrolyte water electrolysis, Int. J. Hydrogen Energy, 7, 397, 10.1016/0360-3199(82)90050-7

Tiwari, 2011, The state of understanding of ionic polymer metal composite architecture: a review, Smart Mater. Struct., 20, 083001, 10.1088/0964-1726/20/8/083001

Tripathi, 2019, Cost-effective fabrication of ionic polymer based artificial muscles for catheter-guidewire maneuvering application, Microsyst. Technol., 25, 1129, 10.1007/s00542-018-4152-3

Tsai, 2012, Polydimethylsiloxane coating on an ionic polymer metallic composite for a tunable focusing mirror, Appl. Opt., 51, 8315, 10.1364/AO.51.008315

Volpini, 2017, Modelling compression sensing in ionic polymer metal composites, Smart Mater. Struct., 26, 035030, 10.1088/1361-665X/26/3/035030

Wang, 2019, The effects of dimensions on the deformation sensing performance of ionic polymer-metal composites, Sensors, 19, 2104, 10.3390/s19092104

Wang, , Influence of additives on the properties of casting nafion membranes and SO-based ionic polymer–Metal composite actuators, Polymer Eng. Sci., 54, 818, 10.1002/pen.23634

Wang, , Effect of dehydration on the mechanical and physicochemical properties of gold-and palladium-ionomeric polymer-metal composite (IPMC) actuators, Electrochim. Acta, 129, 450, 10.1016/j.electacta.2014.02.114

Wang, 2017, Formation and characterization of dendritic interfacial electrodes inside an ionomer, ACS Appl. Mater. Interfaces, 9, 30258, 10.1021/acsami.7b08012

Wang, , Effects of preparation steps on the physical parameters and electromechanical properties of IPMC actuators, Smart Materials and Structures, 23, 125015, 10.1088/0964-1726/23/12/125015

Wang, 2016, Effects of surface roughening of Nafion 117 on the mechanical and physicochemical properties of ionic polymer–metal composite (IPMC) actuators, Smart Materials and Structures, 25, 085012, 10.1088/0964-1726/25/8/085012

Yamakita, 2006, Integrated design of IPMC actuator/sensor, IEEE International Conference on Robotics & Automation, 10.1109/ROBOT.2006.1641973

Yip, 2012, Tunable carbon nanotube ionic polymer actuators that are operable in dry conditions, Sens. Actu. B Chem., 162, 76, 10.1016/j.snb.2011.12.038

Zhu, 2018, Rapid deformation of IPMC under a high electrical pulse stimulus inspired by action potential, Smart Mater. Struct., 28, 01L, 10.1088/1361-665X/aadc38

Zhu, 2019, Ionic polymer pressure sensor with gradient shape based on ion migration, J. Appl. Phys., 125, 024901, 10.1063/1.5058100

Zhu, , Influence of ambient humidity on the voltage response of ionic polymer–metal composite sensor, J. Phys. Chem. B, 120, 3215, 10.1021/acs.jpcb.5b12634

Zhu, , Effects of cation on electrical responses of ionic polymer-metal composite sensors at various ambient humidities, J. Appl. Phys., 120, 57, 10.1063/1.4961732

Zhu, , An easily fabricated high performance ionic polymer based sensor network, Appl. Phys. Lett., 109, 073504, 10.1063/1.4961529

Zolfagharian, 2016, Evolution of 3D printed soft actuators, Sens. Act. A Phys., 250, 258, 10.1016/j.sna.2016.09.028