A Collective Study on Modeling and Simulation of Resistive Random Access Memory

Nanoscale Research Letters - Tập 13 Số 1 - 2018
Debashis Panda1, Paritosh Piyush Sahu1, Tseung‐Yuen Tseng2
1Department of Electronics and Communication Engineering, National Institute of Science and Technology, Berhampur, Odisha, 761008, India
2Department of Electronics Engineering & Institute of Electronics, National Chiao Tung University, HsinChu 30010, Taiwan

Tóm tắt

Từ khóa


Tài liệu tham khảo

Chua LO (1971) Memristor—the missing circuit element. IEEE Trans Circuit Theory 18:507–519 Available from: http://ieeexplore.ieee.org/document/1083337/

Chua LO, Kang SM (1976) Memristive devices and systems. Proc IEEE 64:209–223 Available from:  https://doi.org/10.1109/PROC.1976.10092

Strukov DB, Snider GS, Stewart DR, Williams RS (2008) The missing memristor found. Nature 453:80–83 Available from:  https://www.nature.com/articles/nature06932

Chua LO (2013) The fourth element. Proc IEEE 100:201–204 Available from:  https://doi.org/10.1109/ISCAS.2013.6571817

Biolek D, Biolek Z, Biolková V, Kolka Z (2013) Some fingerprints of ideal memristors. Proc Int Symp Circuits Syst Available from:  https://doi.org/10.1109/ISCAS.2013.6571817

Wong H-SP, Lee H-Y, Yu S, Chen Y-S, Wu Y, Chen P-S et al (2012) Metal oxide RRAM. Proc IEEE 100:1951–1970 Available from:  https://doi.org/10.1109/JPROC.2012.2190369

Tsai T-L, Chang H-Y, Lou JJ-C, Tseng T-Y (2016) A high performance transparent resistive switching memory made from ZrO 2/AlON bilayer structure. Appl Phys Lett 108:153505 Available from: http://aip.scitation.org/doi/10.1063/1.4946006

Prakash A, Jana D, Maikap S (2013) TaOx-based resistive switching memories: prospective and challenges. Nanoscale Res Lett 8:418 Available from: http://nanoscalereslett.springeropen.com/articles/10.1186/1556-276X-8-418

Ielmini D (2016) Resistive switching memories based on metal oxides: mechanisms, reliability and scaling. Semicond Sci Technol 31:063002 IOP Publishing. Available from: http://stacks.iop.org/0268-1242/31/i=6/a=063002?key=crossref.ba6cab0bca4179e152c380f4045bc2b1

Chang T-C, Chang K-C, Tsai T-M, Chu T-J, Sze SM (2016) Resistance random access memory. Mater Today 19:254–264 Available from: http://linkinghub.elsevier.com/retrieve/pii/S1369702115003843

Jana D, Roy S, Panja R, Dutta M, Rahaman SZ, Mahapatra R et al (2015) Conductive-bridging random access memory: challenges and opportunity for 3D architecture. Nanoscale Res Lett 10:188 Available from: http://www.nanoscalereslett.com/content/10/1/188

Kund M, Beitel G, Pinnow C-U, Rohr T, Schumann J, Symanczyk R et al (2005) Conductive bridging RAM (CBRAM): an emerging non-volatile memory technology scalable to sub 20nm, IEEE Int. devices meet. 2005. IEDM tech. Dig. IEEE, pp 754–757 Available from: http://ieeexplore.ieee.org/document/1609463/

Chandrasekaran S, Simanjuntak FM, Tsai T-L, Lin C-A, Tseng T-Y (2017) Effect of barrier layer on switching polarity of ZrO 2-based conducting-bridge random access memory. Appl Phys Lett 111:113108 Available from: http://aip.scitation.org/doi/10.1063/1.5003622

Ielmini D, Spiga S, Nardi F, Cagli C, Lamperti A, Cianci E et al (2011) Scaling analysis of submicrometer nickel-oxide-based resistive switching memory devices. J Appl Phys 109(3):034506

Lee M-J, Lee CB, Lee D, Lee SR, Chang M, Hur JH et al (2011) A fast, high-endurance and scalable non-volatile memory device made from asymmetric Ta2O5−x/TaO2−x bilayer structures. Nat Mater 10:625–630 Available from: http://www.nature.com/doifinder/10.1038/nmat3070

Waser R, Aono M (2007) Nanoionics-based resistive switching memories. Nat Mater 6:833–840 Available from: http://www.ncbi.nlm.nih.gov/pubmed/17972938

Deng Y, Chen H-Y, Gao B, Yu S, Wu S-C, Zhao L et al (2013) Design and optimization methodology for 3D RRAM arrays, 2013 IEEE Int. Electron devices meet. IEEE, pp 25.7.1–25.7.4 Available from: http://ieeexplore.ieee.org/document/6724693/

Yu M, Fang Y, Wang Z, Chen G, Pan Y, Yang X et al (2016) Encapsulation layer design and scalability in encapsulated vertical 3D RRAM. Nanotechnology 27:205202 Available from: http://stacks.iop.org/0957-4484/27/i=20/a=205202?key=crossref.0c6eebf2ff9ddc4c929d78ae2073e31a

Chen HY, Yu S, Gao B, Huang P, Kang J, Wong HSP (2012) HfOx based vertical resistive random access memory for cost-effective 3D cross-point architecture without cell selector. Tech. Dig. - Int. Electron Devices Meet. IEDM, Fort Lee Available from:  https://doi.org/10.1109/IEDM.2012.6479083

Deng Y, Huang P, Chen B, Yang X, Gao B, Wang J et al (2013) RRAM crossbar array with cell selection device: a device and circuit interaction study. IEEE Trans. Electron Devices . 60:719–726 Available from: http://ieeexplore.ieee.org/document/6392926/

Hudec B, Hsu C-W, Wang I-T, Lai W-L, Chang C-C, Wang T et al (2016) 3D resistive RAM cell design for high-density storage class memory—a review. Sci China Inf Sci 59:61403 Available from: http://link.springer.com/10.1007/s11432-016-5566-0

Lien CH, Tsai KH, Chen YS, Lee HY, Chen PS, Chen FT et al (2014) Overview and high density application of HfOx based RRAM. 2014 12th IEEE Int. Conf. Solid-State Integr. Circuit Technol. IEEE, New Jersey, pp 1–4 Available from: http://ieeexplore.ieee.org/document/7021431/

Sun P, Lu N, Li L, Li Y, Wang H, Lv H et al (2015) Thermal crosstalk in 3-dimensional RRAM crossbar array. Sci Rep 5:13504 Nature Publishing Group. Available from: http://www.scopus.com/inward/record.url?eid=2-s2.0-84940497855&partnerID=tZOtx3y1

Yu M, Cai Y, Wang Z, Fang Y, Liu Y, Yu Z et al (2016) Novel vertical 3D structure of TaOx-based RRAM with self-localized switching region by sidewall electrode oxidation. Sci Rep 6:21020 Available from: http://www.nature.com/articles/srep21020

Chiu P-F, Chang M-F, Sheu S-S, Lin K-F, Chiang P-C, Wu C-W et al (2010) A low store energy, low VDDmin, nonvolatile 8T2R SRAM with 3D stacked RRAM devices for low power mobile applications. 2010 Symp. VLSI Circuits. IEEE, New Jersey, pp 229–230 Available from: http://ieeexplore.ieee.org/document/5560286/

Kim J, Jung K, Kim Y, Jo Y, Cho S, Woo H et al (2016) Switching power universality in unipolar resistive switching memories. Nat Publ Gr:1–10 Nature Publishing Group. Available from: https://doi.org/10.1038/srep23930

Luo Q, Xu X, Liu H, Lv H, Gong T, Long S et al (2016) Super non-linear RRAM with ultra-low power for 3D vertical nano-crossbar arrays. Nano 8:15629–15636 Available from: http://xlink.rsc.org/?DOI=C6NR02029A

Zhuang WW, Pan W, Ulrich BD, Lee JJ, Stecker L, Burmaster A et al (2002) Novel colossal magnetoresistive thin film nonvolatile resistance random access memory (RRAM). Dig. Int. Electron Devices Meet. IEEE, New Jersey, pp 193–196 Available from: http://ieeexplore.ieee.org/document/1175811/

Wang I-T, Lin Y-C, Wang Y-F, Hsu C-W, Hou T-H (2014) 3D synaptic architecture with ultralow sub-10 fJ energy per spike for neuromorphic computation. 2014 IEEE Int. Electron Devices Meet. IEEE, New Jersey, pp 28.5.1–28.5.4 Available from: http://ieeexplore.ieee.org/document/7047127/

Chen CY, Goux L, Fantini A, Degraeve R, Redolfi A, Groeseneken G et al (2016) Stack optimization of oxide-based RRAM for fast write speed (<1μs) at low operating current (<10μA). Solid State Electron 125:198–203 Available from: http://linkinghub.elsevier.com/retrieve/pii/S0038110116300454

Muraoka S, Osano K, Kanzawa Y, Mitani S, Fujii S, Katayama K et al (2007) Fast switching and long retention Fe-O ReRAM and its switching mechanism. Tech. Dig. - Int. Electron Devices Meet. IEDM, New Jersey, pp 779–782 Available from:  https://doi.org/10.1109/IEDM.2007.4419063

Sheu S-S, Cheng K-H, Chang M-F, Chiang P-C, Lin W-P, Lee H-Y et al (2011) Fast-write resistive RAM (RRAM) for embedded applications. IEEE Des Test Comput 28:64–71 Available from: http://ieeexplore.ieee.org/document/5590231/

Tsunoda K, Kinoshita K, Noshiro H, Yamazaki Y, Jizuka T, Ito Y et al (2007) Low power and high speed switching of Ti-doped NiO ReRAM. Fujitsu: 2007–2010 Available from:  https://doi.org/10.1109/IEDM.2007.4419060

Azzaz M, Vianello E, Sklenard B, Blaise P, Roule A, Sabbione C et al (2016) Endurance/retention trade off in HfOx and TaOx based RRAM. IEEE 8th Int. Mem. Work. IEEE, Piscataway, pp 1–4 Available from: http://ieeexplore.ieee.org/document/7495268/

Cheng CH, Chin A, Yeh FS (2010) Novel ultra-low power RRAM with good endurance and retention. 2010 Symp. VLSI Technol. IEEE, Piscataway, pp 85–86 Available from: http://ieeexplore.ieee.org/document/5556180/

Govoreanu B, Redolfi A, Zhang L, Adelmann C, Popovici M, Clima S et al (2013) Vacancy-modulated conductive oxide resistive RAM (VMCO-RRAM): an area-scalable switching current, self-compliant, highly nonlinear and wide on/off-window resistive switching cell. 2013 IEEE Int. Electron Devices Meet. IEEE, Piscataway, pp 10.2.1–10.2.4 Available from: http://ieeexplore.ieee.org/document/6724599/

Zhao H, Tu H, Wei F, Shi Z, Xiong Y, Zhang Y et al (2015) High mechanical endurance RRAM based on amorphous gadolinium oxide for flexible nonvolatile memory application. J Phys D Appl Phys 48:205104 IOP Publishing . Available from: http://stacks.iop.org/0022-3727/48/i=20/a=205104?key=crossref.9c819422f8bf5bdab867fd03191cb3d9

Mei CY, Shen WC, Chih Y-D, King Y-C, Lin CJ (2013) 28nm high-k metal gate RRAM with fully compatible CMOS logic processes, Piscataway, 2013 Int. Symp. VLSI Technol. Syst. Appl. IEEE, pp 1–2 Available from: http://ieeexplore.ieee.org/document/6545590/

Ielmini D, Nardi F, Cagli C (2011) Universal reset characteristics of unipolar and bipolar metal-oxide RRAM. IEEE Trans. Electron Devices. 58:3246–3253 Available from: https://doi.org/10.1109/TED.2011.2161088

Tanachutiwat S, Liu M, Wang W (2011) FPGA based on integration of CMOS and RRAM. IEEE Trans Very Large Scale Integr Syst 19:2023–2032 Available from: http://ieeexplore.ieee.org/document/5560770/

Wang XP, Chen ZX, Li X, Kamath AR, Tang LJ, Mei D et al (2012) HfOx-based RRAM cells with fully CMOS compatible technology. 2012 Int Conf Solid-State Integr Circuit 32:1–6 Available from:  https://pdfs.semanticscholar.org/062d/6340a889d92a1b9561af3c2833d8f6f0ebe2.pdf

Xu X, Luo Q, Gong T, Lv H, Long S, Liu Q et al (2016) Fully CMOS compatible 3D vertical RRAM with self-aligned self-selective cell enabling sub-5nm scaling. 2016 IEEE Symp. VLSI Technol. IEEE, Piscataway, pp 1–2 Available from: http://ieeexplore.ieee.org/document/7573388/

Panda D, Dhar A, Ray SK (2010) Nonvolatile and unipolar resistive switching characteristics of pulsed laser ablated NiO films. J Appl Phys 108(10):104513 Available from:  https://doi.org/10.1063/1.3514036

Cortese S, Trapatseli M, Khiat A, Prodromakis T (2016) On the origin of resistive switching volatility in Ni/TiO2/Ni stacks. J Appl Phys 120:65104 Available from: http://aip.scitation.org/doi/10.1063/1.4960690

Panda D, Simanjuntak FM, Tseng T-Y (2016) Temperature induced complementary switching in titanium oxide resistive random access memory. AIP Adv 6:75314 Available from: http://scitation.aip.org/content/aip/journal/adva/6/7/10.1063/1.4959799

Yang JJ, Pickett MD, Li X, Ohlberg DAA, Stewart DR, Williams RS (2008) Memristive switching mechanism for metal/oxide/metal nanodevices. Nat Nanotechnol 3:429–433 Available from:  www.nature.com/articles/nnano.2008.160

Panda D, Dhar A, Ray SK (2012) Nonvolatile Memristive switching characteristics of TiO2 films EmbeddedWith nickel nanocrystals. IEEE Trans Nanotechnol 11:51–55 Available from:  https://doi.org/10.1109/TNANO.2011.2132142

Yu S, Philip Wong H-S (2014) Characterization and modeling of the conduction and switching mechanisms of HfOx based RRAM. MRS Proc 1631:2–13 Available from:  http://dx.doi.org/10.1557/opl.2014.175

Panda D, Dhar A, Ray SK (2009) Nonvolatile unipolar memristive switching mechanism of pulse laser ablated NiO films, 2009 2nd Int. work. Electron devices Semicond. Technol. IEDST ‘09, pp 1–5 Available from:  https://doi.org/10.1109/EDST.2009.5166114

Brivio S, Covi E, Serb A, Prodromakis T, Fanciulli M, Spiga S (2016) Experimental study of gradual/abrupt dynamics of HfO2-based memristive devices. Appl Phys Lett 109:133504 Available from: http://aip.scitation.org/doi/10.1063/1.4963675

Panda D, Huang CY, Tseng TY (2012) Resistive switching characteristics of nickel silicide layer embedded HfO2 film. Appl Phys Lett 100:112901 Available from:  https://doi.org/10.1063/1.3694045

Hsu C-W, Wan C-C, Wang I-T, Chen M-C, Lo C-L, Lee Y-J, et al. 3D vertical TaOx/TiO2 RRAM with over 10^3 self-rectifying ratio and sub microAmp operating current. Piscataway:2013 IEEE Int. Electron Devices Meet. IEEE; 2013. p. 10.4.1–10.4.4. Available from: http://ieeexplore.ieee.org/document/6724601/

Wang S-Y, Lee D-Y, Tseng T-Y, Lin C-Y (2009) Effects of Ti top electrode thickness on the resistive switching behaviors of rf-sputtered ZrO2 memory films. Appl Phys Lett 95:112904 Available from: http://aip.scitation.org/doi/10.1063/1.3231872

Chakrabarti S, Samanta S, Maikap S, Rahaman SZ, Cheng H-M et al (2016) Nanoscale Res Lett 11:389 Nanoscale Research Letters. Available from: http://nanoscalereslett.springeropen.com/articles/10.1186/s11671-016-1602-7

Lin C-Y, Wu C-Y, Wu C-Y, Tseng T-Y, Hu C (2007) Modified resistive switching behavior of ZrO2 memory films based on the interface layer formed by using Ti top electrode. J Appl Phys 102:94101 Available from: http://aip.scitation.org/doi/10.1063/1.2802990

Szot K, Spieir W, Bihlmayer G, Waser R (2006) Switching the electrical resistance of individual dislocations in single-crystalline SrTiO3. Nat Mater 5:312–320 Available from:  www.nature.com/articles/nmat1614

Seo S, Lee MJ, Seo DH, Jeoung EJ, Suh DS, Joung YS et al (2004) Reproducible resistance switching in polycrystalline NiO films. Appl Phys Lett 85:5655–5657 Available from:  https://doi.org/10.1063/1.1831560

Quintero M, Levy P, Leyva AG, Rozenberg MJ (2007) Mechanism of electric-pulse-induced resistance switching in manganites. Phys Rev Lett 98:116601 Available from:  https://doi.org/10.1103/PhysRevLett.98.116601

Kumar SS, Sahu PP, Panda D (2017) Barrier potential engineering in Ti/HfO 2 /Pt resistive random access memory. J Nanosci Nanotechnol 17:9328–9332 Available from: http://www.ingentaconnect.com/content/10.1166/jnn.2017.14682

Liu SQ, Wu NJ, Ignatiev A (2000) Electric-pulse-induced reversible resistance change effect in magnetoresistive films. Appl Phys Lett 76:2749–2751 Available from: http://aip.scitation.org/doi/10.1063/1.126464

Simanjuntak FM, Panda D, Tsai T-L, Lin C-A, Wei K-H, Tseng T-Y (2015) Enhanced switching uniformity in AZO/ZnO1−x/ITO transparent resistive memory devices by bipolar double forming. Appl Phys Lett 107:33505 Available from: http://scitation.aip.org/content/aip/journal/apl/107/3/10.1063/1.4927284

Choi BJ, Yang JJ, Zhang MX, Norris KJ, Ohlberg DAA, Kobayashi NP et al (2012) Nitride memristors. Appl Phys A Mater Sci Process 109:1–4 Available from:  https://doi.org/10.1007/s00339-012-7052-x

Choi BJ, Jeong DS, Kim SK, Rohde C, Choi S, Oh JH et al (2005) Resistive switching mechanism of TiO 2 thin films grown by atomic-layer deposition. J Appl Phys 98(3):033715 Available from:  https://doi.org/10.1063/1.2001146

Simanjuntak FM, Panda D, Wei K-H, Tseng T-Y (2016) Status and prospects of ZnO-based resistive switching memory devices. Nanoscale Res Lett 11:368 Available from: http://nanoscalereslett.springeropen.com/articles/10.1186/s11671-016-1570-y

Luo W-C, Hou T-H, Lin K-L, Lee Y-J, Lei T-F (2013) Reversible transition of resistive switching induced by oxygen-vacancy and metal filaments in HfO2. Solid. State. Electron. 89:167–70. Available from: https://doi.org/10.1016/j.sse.2013.08.005

Panda D, Tseng T-Y (2013) Growth, dielectric properties, and memory device applications of ZrO2 thin films. Thin Solid Films 531:1–20 Available from: http://www.sciencedirect.com/science/article/pii/S0040609013000540

Chua LO (2011) Resistance switching memories are memristors. Appl Phys A Mater Sci Process 102:765–783 Available from: https://link.springer.com/article/10.1007/s00339-011-6264-9

Lehtonen E, Laiho M (2010) CNN using memristors for neighborhood connections. 12th Int. Work. Cell. Nanoscale Networks their Appl. (CNNA 2010), Atlanta, pp 1–4 Available from: http://ieeexplore.ieee.org/document/5430304/

Strukov DB, Williams RS (2009) Exponential ionic drift: fast switching and low volatility of thin-film memristors. Appl Phys A Mater Sci Process 94:515–519 Available from:  https://doi.org/10.1007/s00339-008-4975-3

Pickett MD, Strukov DB, Borghetti JL, Yang JJ, Snider GS, Stewart DR et al (2009) Switching dynamics in titanium dioxide memristive devices. J Appl Phys 106:1–6 Available from:  https://doi.org/10.1063/1.3236506

Williams RS, Pickett MD, Strachan JP (2013) Physics-based memristor models,Proc.- IEEE Int. Symp. Circuits Syst. pp 217–220 Available from:  https://doi.org/10.1109/ISCAS.2013.6571821

Abdalla H, Pickett MD (2011) SPICE modeling of memristors. Proc. - IEEE Int. Symp. Circuits Syst, Piscataway, pp 1832–1835 Available from:  https://doi.org/10.1109/ISCAS.2011.5937942

Yakopcic C, Taha TM, Subramanyam G, Pino RE, Rogers S (2011) A memristor device model. IEEE Electron Device Lett. 32:1436–1438 Available from:  https://doi.org/10.1109/LED.2011.2163292

Yakopcic C, Taha TM, Subramanyam G, Pino RE (2013) Generalized memristive device SPICE model and its application in circuit design. IEEE Trans Comput Deisgn Integr Circuits Syst 32:1201–1214 Available from:  https://doi.org/10.1109/TCAD.2013.2252057

Kvatinsky S, Talisveyberg K, Fliter D, Friedman EG, Kolodny A, Weiser UC. Verilog-A for memristor models. CCIT Tech Rep. 2011;8. Available from: http://webee.technion.ac.il/people/skva/Memristor Models/VerilogA models technical report.pdf

Kvatinsky S, Friedman EG, Kolodny A, Member S, Weiser UC (2013) TEAM: Threshold adaptive memristor model. IEEE Trans Circuits Syst 60:211–221 Available from:  https://doi.org/10.1109/TCSI.2012.2215714

Kvatinsky S, Ramadan M, Friedman EG, Kolodny A (2015) VTEAM: a general model for voltage-controlled memristors. IEEE Trans Circuits Syst 62:786–790

Guan X, Yu S, Wong H-SP (2012) A SPICE compact model of metal oxide resistive switching memory with variations. {IEEE} Electron Device Lett 33:1405–1407 Available from: https://doi.org/10.1109/LED.2012.2210856

Jiang Z, Yu S, Wu Y, Engel JH, Guan X, Wong HSP (2014) Verilog-A compact model for oxide-based resistive random access memory (RRAM), Int. Conf. Simul. Semicond. Process. Devices, SISPAD, vol 41, p 4 Available from:  https://doi.org/10.1109/SISPAD.2014.6931558

Chen P-Y, Yu S (2015) Compact modeling of RRAM devices and its applications in 1T1R and 1S1R array design. IEEE Trans. Electron Devices . 62:4022–4028 Available from: http://ieeexplore.ieee.org/document/7312469/

Jiang Z, Wu Y, Yu S, Yang L, Song K, Karim Z et al (2016) A compact model for metal–oxide resistive experiment verification. IEEE Trans. Electron Devices . 63:1–9 Available from: http://ieeexplore.ieee.org/articleDetails.jsp?arnumber=7448912

Russo U, Ielmini D, Cagli C, Lacaita AL (2009) Filament conduction and reset mechanism in NiO-based resistive-switching memory (RRAM) devices. IEEE Trans. Electron Devices. 56:186–192 Available from:  https://doi.org/10.1109/TED.2008.2010583

Russo U, Member S, Ielmini D, Cagli C, Lacaita AL, Member S (2009) Self-accelerated thermal dissolution model for reset programming in unipolar resistive-switching memory (RRAM) devices. IEEE Trans. Electron Devices. 56:193–200 Available from:  https://doi.org/10.1109/TED.2008.2010584

Russo U, Ielmini D, Cagli C, Lacaita AL, Spiga CW S, Perego M, MF (2007) Conductive-filament switching analysis and self-accelerated thermal dissolution model for reset in NiO-based RRAM. IEDM Tech Dig 2:775–778 Available from:  https://doi.org/10.1109/IEDM.2007.4419062

Nardi F, Larentis S, Balatti S, Gilmer DC, Ielmini D (2012) Resistive switching by voltage-driven ion migration in bipolar RRAM—part I: experimental study. IEEE Trans Electron Devices 59:2461–2467 Available from: http://ieeexplore.ieee.org/document/6266728/

Larentis S, Nardi F, Balatti S, Gilmer DC, Ielmini D (2012) Resistive switching by voltage-driven ion migration in bipolar RRAM—part II: modeling. IEEE Trans. Electron Devices. 59:2468–2475 Available from:  https://doi.org/10.1109/TED.2012.2202320

Kim S, Kim S-J, Kim KM, Lee SR, Chang M, Cho E et al (2013) Physical electro-thermal model of resistive switching in bi-layered resistance-change memory. Sci Rep 3:1680 Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3631947&tool=pmcentrez&rendertype=abstract

Huang P, Liu XY, Li WH, Deng YX, Chen B, Lu Y et al (2012) A physical based analytic model of RRAM operation for circuit simulation. Tech Dig. - Int. Electron Devices Meet. IEDM, New Jersey, pp 605–608 Available from:  https://doi.org/10.1109/IEDM.2012.6479110

Huang P, Liu XY, Chen B, Li HT, Wang YJ, Deng YX et al (2013) A physics-based compact model of metal-oxide-based RRAM DC and AC operations. IEEE Trans. Electron Devices. 60:4090–4097 Available from:  https://doi.org/10.1109/TED.2013.2287755

Bocquet M, Deleruyelle D, Muller C, Portal JM (2011) Self-consistent physical modeling of set/reset operations in unipolar resistive-switching memories. Appl Phys Lett 98:4–7 Available from:  https://doi.org/10.1063/1.3605591

Bocquet M, Deleruyelle D, Aziza H, Muller C, Portal JM, Cabout T et al (2014) Robust compact model for bipolar oxide-based resistive switching memories. IEEE Trans. Electron Devices. 61:674–681 Available from:  https://doi.org/10.1109/TED.2013.2296793

Bocquet M, Aziza H, Zhao W, Zhang Y, Onkaraiah S, Muller C et al (2014) Compact modeling solutions for oxide-based resistive switching memories (OxRAM). J Low Power Electron Appl 4:1–14 Available from: http://www.mdpi.com/2079-9268/4/1/1/

González-Cordero G, Roldan J, Jiménez-Molinos F, Suñé J, LM LS (2016) A new compact model for bipolar RRAMs based on truncated-cone conductive fi laments—a Verilog-A approach. Semicond Sci Technol 31:115013 IOP Publishing . Available from: https://doi.org/10.1088/0268-1242/31/11/115013

Joglekar YN, Wolf SJ. The elusive memristor: properties of basic electrical circuits. Eur J Phys 2009;30:661–675. Available from: http://arxiv.org/abs/0807.3994%0A. http://dx.doi.org/10.1088/0143-0807/30/4/001

Biolek Z, Biolek Z, Biolek D, Biolková V (2009) Spice model of memristor with nonlinear dopant drift. Radioengineering 18:210–214 Available from: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.497.8869

Benderli S, Wey TA (2009) On SPICE macromodelling of TiO2 memristors. Electron Lett 45:377 Available from: http://digital-library.theiet.org/content/journals/10.1049/el.2009.3511

Kim K, Shin S, Kim K, Kang S (2010) Compact models for memristors based on charge—flux constitutive relationships. IEEE trans. Comput. Deisgn Integr Circuits Syst 29:590–598 Available from:  https://doi.org/10.1109/TCAD.2010.2042891

Prodromakis T, Peh BP, Papavassiliou C, Member S (2011) A versatile memristor model with non-linear dopant kinetics. IEEE Trans. Electron Devices. 58:3099–3105 Available from:  https://doi.org/10.1109/TED.2011.2158004

Corinto F, Member S, Ascoli A (2012) A boundary condition-based approach to the modeling of memristor nanostructures. IEEE Trans Circuits Syst Pap 59:2713–2726 Available from:  https://doi.org/10.1109/TCSI.2012.2190563

Wang T, Roychowdhury J. Well-posed models of memristive devices. 2016; Available from: https://arxiv.org/abs/1605.04897v1

Yang JJ, Strukov DB, Stewart DR (2013) Memristive devices for computing. Nat Nanotechnol 8:13–24 Nature Publishing Group. Available from: https://doi.org/10.1038/nnano.2012.240

Yang Z, Ko C, Ramanathan S (2011) Oxide electronics utilizing ultrafast metal-insulator transitions. Annu Rev Mater Res 41:337–367 Available from: http://www.annualreviews.org/doi/10.1146/annurev-matsci-062910-100347

Li Y, Zhang M, Long S, Teng J, Liu Q, Lv H et al (2017) Investigation on the conductive filament growth dynamics in resistive switching memory via a universal Monte Carlo simulator. Sci Rep 7:11204 Available from:  https://www.nature.com/articles/s41598-017-11165-5

Waser R (2012) Nanoelectronics and information technology, Nanoelectron. Inf. Technol, 3rd edn, pp 201–320 Available from:  https://dl.acm.org/citation.cfm?id=778151

Waser R, Dittmann R, Staikov G, Szot K (2009) Redox-based resistive switching memories—nanoionic mechanisms, prospects, and challenges. Adv Mater 21:2632–2663 Available from: http://onlinelibrary.wiley.com/doi/10.1002/adma.200900375/full

Panda D, Tseng T-Y (2014) Perovskite oxides as resistive switching memories: a review. Ferroelectrics 471:23–64 Available from: http://www.tandfonline.com/doi/abs/10.1080/00150193.2014.922389#.VdCFAflViuQ

Valov I, Waser R, Jameson JR, Kozicki MN (2011) Electrochemical metallization memories—fundamentals, applications, prospects. Nanotechnology 22:289502 Available from: http://stacks.iop.org/0957-4484/22/i=28/a=289502?key=crossref.88dae5de7b412f98c7f889647d54e234

Sawa A (2008) Resistive switching in transition metal oxides. Mater Today 11:28–36 Available from:  https://doi.org/10.1016/S1369-7021(08)70119-6

Pershin YV, Di Ventra M (2011) Memory effects in complex materials and nanoscale systems. Adv Phys 60:145–227 Available from: http://arxiv.org/abs/1011.3053

McCreery RL, Bergren AJ (2009) Progress with molecular electronic junctions: meeting experimental challenges in design and fabrication. Adv Mater 21:4303–4322 Available from:  https://doi.org/10.1002/adma.200802850

Kim KM, Jeong DS, Hwang CS (2011) Nanofilamentary resistive switching in binary oxide system; a review on the present status and outlook. Nanotechnology 22:254002 Available from:  https://doi.org/10.1088/0957-4484/22/25/254002

Jeong DS, Thomas R, Katiyar RS, Scott JF, Kohlstedt H, Petraru A et al (2012) Emerging memories: resistive switching mechanisms and current status. Reports Prog Phys 75:76502 Available from: http://stacks.iop.org/0034-4885/75/i=7/a=076502?key=crossref.86fa7788b7ce43a65a0a8eeb338651f3

Akinaga H, Shima H (2010) Resistive random access memory (ReRAM) based on metal oxides. Proc IEEE 98:2237–2251 Available from: http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5607274

Ascoli A, Corinto F, Senger V, Tetzlaff R (2013) Memristor model comparison. IEEE Circuits Syst Mag 13:89–105 Available from:  https://doi.org/10.1109/MCAS.2013.2256272

Villena MA, Roldán JB, Jiménez-Molinos F, Miranda E, Suñé J, Lanza M (2017) SIM2RRAMSIM2RRAM: a physical model for RRAM devices simulation. J Comput Electron 2017:1–26 Available from: http://link.springer.com/10.1007/s10825-017-1074-8

Nagel L (1975) SPICE2, a computer progrem to simulate semiconductor circuit. ERL MemolERL-M 520 Univ. Calif. Univeristy of California Berkeley, Electronics Research Laboratory Available from:  https://www2.eecs.berkeley.edu/Pubs/TechRpts/1975/9602.html

Quarles T, Newton AR, Pederson DO, Sangiovanni-Vincentelli A (1994) SPICE 3 version 3F5 user’s manual. Dep. Electr. Eng. Comput. Sci. Univ. California, Berkeley, pp 395–404 Available from:  https://newton.ex.ac.uk/teaching/CDHW/Electronics2/userguide/

García-Moreno E, Picos R, Al-Chawa MM SPICE model for unipolar RRAM based on a flux-controlled memristor, vol 2016. IEEE Int. Autumn Meet. Power, Electron. Comput. ROPEC 2015, Piscataway, pp 2013–2016 Available from:  https://doi.org/10.1109/ROPEC.2015.7395128

Lai Q, Zhu Z, Chen Y, Patil S, Wudl F (2006) Organic nonvolatile memory by dopant-configurable polymer. Appl Phys Lett 88:133515 Available from: http://aip.scitation.org/doi/10.1063/1.2191874

Smits JHA, Meskers SCJ, Janssen RAJ, Marsman AW, De Leeuw DM (2005) Electrically rewritable memory cells from poly(3-hexylthiophene) Schottky diodes. Adv Mater 17:1169–1173 Available from:  http://onlinelibrary.wiley.com/doi/10.1002/adma.200401534/abstract

Zhitenev NB, Sidorenko A, Tennant DM, Cirelli RA (2007) Chemical modification of the electronic conducting states in polymer nanodevices. Nat Nanotechnol 2:237–242 Available from: https://doi.org/10.1038/nnano.2007.75

Collier CP (2000) A [2]Catenane-based solid state electronically reconfigurable switch. Science (80- ) 289:1172–1175 Available from: http://www.sciencemag.org/cgi/doi/10.1126/science.289.5482.1172

Scott J, Bozano L (2007) Nonvolatile memory elements based on organic materials. Adv Mater 19:1452–1463 Available from: https://doi.org/10.1002/adma.200602564

Dietrich S, Angerbauer M, Ivanov M, Gogl D, Hoenigschmid H, Kund M et al (2007) A nonvolatile 2-Mbit CBRAM memory core featuring advanced read and program control. IEEE J Solid State Circuits 42:839–845 Available from: http://ieeexplore.ieee.org/document/4140579/

Kozicki MN, Park M, Mitkova M (2005) Nanoscale memory elements based on solid-state electrolytes. IEEE Trans Nanotechnol 4:331–338 Available from: http://ieeexplore.ieee.org/document/1430669/

Terabe K, Hasegawa T, Nakayama T, Aono M (2005) Quantized conductance atomic switch. Nature 433:47–50 Available from: http://www.nature.com/doifinder/10.1038/nature03190

Richter CA, Stewart DR, Ohlberg DAA, Williams RS (2005) Electrical characterization of al/AlOx/molecule/Ti/al devices. Appl Phys A Mater Sci Process 80:1355–1362 Available from: http://link.springer.com/10.1007/s00339-004-3169-x

Dearnaley G, Stoneham AM, Morgan DV, Alpert DLDALEM, THE, AP T, A F et al (1970) Electrical phenomena in amorphous oxide films. Reports Prog. Phys. 33:306 Available from: http://stacks.iop.org/0034-4885/33/i=3/a=306?key=crossref.74b316d5798d76adf37ecef3ff27e351

Hickmott TW (1962) Low-frequency negative resistance in thin anodic oxide films. J Appl Phys 33:2669–2682 Available from: http://scitation.aip.org/content/aip/journal/jap/33/9/10.1063/1.1702530%5Cn

Stewart DR, Ohlberg DAA, Beck PA, Chen Y, Williams RS, Jeppesen JO et al (2004) Molecule-independent electrical switching in Pt/organic monolayer/Ti devices. Nano Lett 4:133–136 Available from: http://pubs.acs.org/doi/abs/10.1021/nl034795u

Jeong DS, Schroeder H, Waser R (2007) Coexistence of bipolar and unipolar resistive switching behaviors in a Pt∕TiO[sub 2]∕Pt stack. Electrochem Solid-State Lett 10:G51 Available from: http://esl.ecsdl.org/cgi/doi/10.1149/1.2742989

Jameson JR, Fukuzumi Y, Wang Z, Griffin P, Tsunoda K, Meijer GI et al (2007) Field-programmable rectification in rutile TiO2 crystals. Appl Phys Lett 91:112101 Available from: http://aip.scitation.org/doi/10.1063/1.2769961

Oligschlaeger R, Waser R, Meyer R, Karthuser S, Dittmann R (2006) Resistive switching and data reliability of epitaxial (Ba,Sr)TiO3 thin films. Appl Phys Lett 88:42901 Available from: http://aip.scitation.org/doi/10.1063/1.2162860

Chen X, Wu N, Ignatiev A (2005) Perovskite RRAM devices with metal/insulator/PCMO/metal heterostructures, Symp. Non-volatile mem. Technol. IEEE, Piscataway, pp 125–128 Available from: http://ieeexplore.ieee.org/document/1541418/

Hamaguchi M, Aoyama K, Asanuma S, Uesu Y, Katsufuji T (2006) Electric-field-induced resistance switching universally observed in transition-metal-oxide thin films. Appl Phys Lett 88:142508 Available from: http://aip.scitation.org/doi/10.1063/1.2193328

Beck A, Bednorz JG, Gerber C, Rossel C, Widmer D (2000) Reproducible switching effect in thin oxide films for memory applications. Appl Phys Lett 77:139–141 Available from: http://aip.scitation.org/doi/10.1063/1.126902

Simmons JG (1963) Electric tunnel effect between dissimilar electrodes separated effect between dissimilar electrodes by a thin insulating film. J Appl Phys 34:2581–2590 Available from: http://www.agu.org/pubs/crossref/1999/1998PA900013.shtml

Mathworks. MATLAB . [cited 2017 Jun 8]. Available from: https://mathworks.com/products/matlab.html

Mathworks (2014) MATLAB® Primer. Elasticity. Elsevier, Amsterdam, pp 541–555 Available from: http://linkinghub.elsevier.com/retrieve/pii/B9780124081369150032

Wang T, Roychowdhury J. Guidelines for writing NEEDS-compatible Verilog-A compact models. 2013. Available from: https://nanohub.org/resources/18621

Lemaitre L, Coram G, McAndrew C, Kundert K (2003) Extensions to Verilog-A to support compact device modeling, Proc. 2003 IEEE Int. Work. Behav. Model. Simul. IEEE, Piscataway, pp 134–138 Available from: http://ieeexplore.ieee.org/document/1249872/

McAndrew CC, Coram GJ, Gullapalli KK, Jones JR, Nagel LW, Roy AS et al (2015) Best practices for compact modeling in Verilog-A. IEEE J Electron Devices Soc 3:383–396 Available from: http://ieeexplore.ieee.org/document/7154394/

Coram GJ (2004) How to (and how not to) write a compact model in Verilog-A, 2004 IEEE Int. Conf. Clust. Comput. (IEEE cat. No.04EX935). IEEE, Piscataway, pp 97–106 Available from: http://ieeexplore.ieee.org/document/1393990/

Yu S, Wu Y, Wong HSP (2011) Investigating the switching dynamics and multilevel capability of bipolar metal oxide resistive switching memory. Appl Phys Lett 98:103514–1–103514–3 Available from:  https://doi.org/10.1063/1.3564883

Yu S, Guan X, Wong H-SP (2012) On the switching parameter variation of metal oxide RRAM—part II: model corroboration and device design strategy. Electron Devices, IEEE Trans 59:1183–1188 Available from:  https://doi.org/10.1109/TED.2012.2184544

Nenzi P, Vogt H (2012) Ngspice User’s manual. Berkeley, CA Available from:  http://ngspice.sourceforge.net/docs/ngspice-manual.pdf

Yu S, Gao B, Fang Z, Yu H, Kang J, Wong H-SP (2012) A neuromorphic visual system using RRAM synaptic devices with sub-pJ energy and tolerance to variability: experimental characterization and large-scale modeling, Int. electron devices meet. IEEE, Piscataway, pp 10.4.1–10.4.4 Available from: http://ieeexplore.ieee.org/document/6479018/

Yu S, Wu Y, Jeyasingh R, Kuzum D, Wong H-SP (2011) An electronic synapse device based on metal oxide resistive switching memory for neuromorphic computation. IEEE Trans Electron Devices 58:2729–2737 Available from: http://ieeexplore.ieee.org/document/5872020/

Zamarreño-Ramos C, Camuñas-Mesa LA, Pérez-Carrasco JA, Masquelier T, Serrano-Gotarredona T, Linares-Barranco B (2011) On spike-timing-dependent-plasticity, memristive devices, and building a self-learning visual cortex. Front Neurosci 5:26 Available from: http://journal.frontiersin.org/article/10.3389/fnins.2011.00026/abstract

Mehrotra K, Mohan CK, Ranka S (1996) Elements of artificial neural networks. MIT Press, Cambridge Available from:  https://mitpress.mit.edu/books/elements-artificial-neural-networks

Park TH, Song SJ, Kim HJ, Kim SG, Chung S, Kim BY et al (2015) Thickness effect of ultra-thin Ta2O5 resistance switching layer in 28 nm-diameter memory cell. Sci Rep 5:15965 Available from: http://www.nature.com/articles/srep15965

Chen CY, Goux L, Fantini A, Redolfi A, Clima S, Degraeve R et al (2014) Understanding the impact of programming pulses and electrode materials on the endurance properties of scaled Ta2O5 RRAM cells, 2014 IEEE Int. Electron Devices Meet. IEEE, Piscataway, pp 14.2.1–14.2.4 Available from: http://ieeexplore.ieee.org/document/7047049/

Menzel S, Waters M, Marchewka A, Bottger U, Dittmann R, Waser R (2011) Origin of the ultra-nonlinear switching kinetics in oxide-based resistive switches. Adv Funct Mater 21:4487–4492 Available from:  http://onlinelibrary.wiley.com/doi/10.1002/adfm.201101117/abstract

Uenuma M, Ishikawa Y, Uraoka Y (2015) Joule heating effect in nonpolar and bipolar resistive random access memory. Appl Phys Lett 107:73503 Available from: http://aip.scitation.org/doi/10.1063/1.4928661

Mott NF, Gurney RW. Electronic processes in ionic crystals. Dover U.K; 1948. Available from: http://books.google.co.in/books?id=MkdUAAAAMAAJ

Russo U, Kamalanathan D, Ielmini D, Lacaita AL, Kozicki MN (2009) Study of multilevel programming in programmable metallization cell (PMC) memory. IEEE Trans. Electron Devices. 56:1040–1047 Available from:  https://doi.org/10.1109/TED.2009.2016019

Yu S, Wong HSP (2011) Compact modeling of conducting-bridge random-access memory (CBRAM). IEEE Trans. Electron Devices. 58:1352–1360 Available from:  https://doi.org/10.1109/TED.2011.2116120

Ielmini D, Nardi F, Cagli C, Lacaita AL (2010) Size-dependent retention time in NiO-based resistive-switching memories. IEEE Electron Device Lett 31:353–355 Available from:  https://doi.org/10.1109/LED.2010.2040799

Chen YY, Goux L, Clima S, Govoreanu B, Degraeve R, Kar GS et al (2013) Endurance/retention trade-off on HfO2\metal cap 1T1R bipolar RRAM. IEEE Trans. Electron Devices. 60:1114–1121 Available from:  https://doi.org/10.1109/TED.2013.2241064

Ahn HS, Han S, Hwang CS (2007) Pairing of cation vacancies and gap-state creation in TiO2 and HfO2. Appl Phys Lett 90 Available from:  https://doi.org/10.1063/1.2749858

Pan F, Subramanian V (2010) A kinetic Monte Carlo study on the dynamic switching properties of electrochemical metallization RRAMs during the SET process, 2010 Int. Conf. Simul. Semicond. Process. Devices. IEEE, Piscataway, pp 19–22 Available from: http://ieeexplore.ieee.org/document/5604584/

Bard AJ, Faulkner LR (2001) Electrochemical methods: fundamentals and applications. Wiley, New York Available from:  http://glearning.tju.edu.cn/pluginfile.php/74331/mod_resource/content/0/%E5%8F%82%E8%80%83%E4%B9%A6/Electrochemical_methods_2ed_2001_-_Bard_Faulkner.pdf

Butcher B, Bersuker G, Young-Fisher KG, Gilmer DC, Kalantarian A, Nishi Y et al Hot forming to improve memory window and uniformity of low-power HfOx-based RRAMs, 2012 4th IEEE Int. Mem. Work, vol 2012. IEEE, Piscataway, pp 1–4 Available from: http://ieeexplore.ieee.org/document/6213647/

Vandelli L, Padovani A, Larcher L, Broglia G, Ori G, Montorsi M et al (2011) Comprehensive physical modeling of forming and switching operations in HfO2 RRAM devices, 2011 Int. Electron devices meet. IEEE, Piscataway, pp 17.5.1–17.5.4 Available from: http://ieeexplore.ieee.org/document/6131574/

Mentor Graphics. Eldo user’s manual. 2005 Available from:  http://web.engr.uky.edu/~elias/tutorials/Eldo/eldo_ur.pdf

Mentor Graphics. Eldo Platform . [cited 2017 Jun 8]. Available from: https://www.mentor.com/products/ic_nanometer_design/analog-mixed-signal-verification/eldo-platform

Cabout T, Perniola L, Jousseaume V, Grampeix H, Nodin JF, Toffoli A et al (2013) Temperature impact (up to 200 °C) on performance and reliability of HfO2-based RRAMs. 5th IEEE Int. Mem Work IMW 2013:116–119 Available from:  https://doi.org/10.1109/IMW.2013.6582112

Diokh T, Le-Roux E, Jeannot S, Gros-Jean M, Candelier P, Nodin JF et al (2013) Investigation of the impact of the oxide thickness and RESET conditions on disturb in HfO2-RRAM integrated in a 65nm CMOS technology. IEEE Int. Reliab. Phys. Symp, Piscataway, pp 5E.4.1–5E.4.4 Available from: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6532043

Chen A, Lin MR (2011) Variability of resistive switching memories and its impact on crossbar array performance. IEEE Int Reliab Phys Symp Proc 2011:7.1–7.4 Available from:  http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=5784590

Cabout T, Buckley J, Cagli C, Jousseaume V, Nodin J-F, De Salvo B (2013) Resistance switching variability in HfO2-based memory structures with different electrodes. Thin Solid Films 533:19–23 Available from:  https://doi.org/10.1109/TDMR.2014.2311231

Berco D, Tseng T-Y (2015) A stochastic simulation method for the assessment of resistive random access memory retention reliability. Appl Phys Lett 107:253504 Available from:  https://doi.org/10.1063/1.4938210

Berco D, Tseng T-Y (2016) A numerical analysis of progressive and abrupt reset in conductive bridging RRAM. J Comput Electron 15:586–594 Available from:  https://doi.org/10.1007/s10825-015-0744-7

Berco D, Tseng T-Y (2016) A numerical study of multi filament formation in metal-ion based CBRAM. AIP Adv 6:25212 Available from:  https://doi.org/10.1063/1.4942209

Berco D, Tseng T-Y (2016) A comprehensive study of bipolar operation in resistive switching memory devices. J Comput Electron 15:577–585 Available from:  https://doi.org/10.1007/s10825-015-0736-7

Berco D, Tseng T-Y (2016) A numerical study of forming voltage and switching polarity dependence on Ti top electrode thickness in ZrO2 RRAM. J Comput Electron 15:595–601 Available from:  https://doi.org/10.1007/s10825-015-0783-0

Lee JS, Lee S, Noh TW (2015) Resistive switching phenomena: a review of statistical physics approaches. Appl Phys Rev 2:31303 Available from: http://aip.scitation.org/doi/10.1063/1.4929512

Villena MA, González MB, Jiménez-Molinos F, Campabadal F, Roldán JB, Suñé J et al (2014) Simulation of thermal reset transitions in resistive switching memories including quantum effects. J Appl Phys 115:214504 Available from: http://aip.scitation.org/doi/10.1063/1.4881500

Wu X, Cha D, Bosman M, Raghavan N, Migas DB, Borisenko VE et al (2013) Intrinsic nanofilamentation in resistive switching. J Appl Phys 113:114503 Available from: http://aip.scitation.org/doi/10.1063/1.4794519

Kwon D-H, Kim KM, Jang JH, Jeon JM, Lee MH, Kim GH et al (2010) Atomic structure of conducting nanofilaments in TiO2 resistive switching memory. Nat Nanotechnol 5:148–153 Available from: http://www.nature.com/doifinder/10.1038/nnano.2009.456

Wang G, Long S, Yu Z, Zhang M, Ye T, Li Y et al (2015) Improving resistance uniformity and endurance of resistive switching memory by accurately controlling the stress time of pulse program operation. Appl Phys Lett 106:92103 Available from: http://aip.scitation.org/doi/10.1063/1.4907604

Villena MA, Roldán JB, Jimenez-Molinos F, Suñé J, Long S, Miranda E et al (2014) A comprehensive analysis on progressive reset transitions in RRAMs. J Phys D Appl Phys 47:205102 Available from: http://stacks.iop.org/0022-3727/47/i=20/a=205102?key=crossref.b1d8c73900a27a699e3324dbb75f4192

Chae SC, Lee JS, Kim S, Lee SB, Chang SH, Liu C et al (2008) Random circuit breaker network model for unipolar resistance switching. Adv Mater 20:1154–1159 Available from:  http://onlinelibrary.wiley.com/doi/10.1002/adma.200702024/abstract

Multiphysics C. COMSOL . [cited 2017 Jun 8]. Available from: https://www.comsol.com/

COMSOL Multiphysics. Introduction to COMSOL Multiphysics. Manual [Internet]. 2009;168. Available from: http://cdn.comsol.com/documentation/5.1.0.145/IntroductionToCOMSOLMultiphysics.pdf

Panda D, Sahu PP (2017) Thermal assisted reset modelling in nickel oxide based unipolar resistive switching memory. J Appl Phys 121:204504 Available from: http://aip.scitation.org/doi/10.1063/1.4984200

Jimenez-Molinos F, Villena MA, Roldan JB, Roldan AM (2015) A SPICE compact model for unipolar RRAM reset process analysis. IEEE Trans Electron Devices 62:955–962

Kim DC, Seo S, Ahn SE, Suh D-S, Lee MJ, Park B-H et al (2006) Electrical observations of filamentary conductions for the resistive memory switching in NiO films. Appl Phys Lett 88:202102 Available from: http://aip.scitation.org/doi/10.1063/1.2204649

Kinoshita K, Tsunoda K, Sato Y, Noshiro H, Yamazaki Y, Fukano T et al (2007) Reduction of reset current in NiO-ReRAM brought about by ideal current limiter, 2007 22nd IEEE non-volatile Semicond. Mem. Work. IEEE, Piscataway, pp 66–67 Available from: http://ieeexplore.ieee.org/document/4290583/

Lee SB, Chae SC, Chang SH, Lee JS, Seo S, Kahng B et al (2008) Scaling behaviors of reset voltages and currents in unipolar resistance switching. Appl Phys Lett 93:212105 Available from: http://aip.scitation.org/doi/10.1063/1.3036532

Nardi F, Ielmini D, Cagli C, Spiga S, Fanciulli M, Goux L et al (2011) Control of filament size and reduction of reset current below 10μA in NiO resistance switching memories. Solid State Electron 58:42–47 Available from: http://linkinghub.elsevier.com/retrieve/pii/S003811011000417X

Wang T, Karthik AV, Wu B, Yao J, Roychowdhury J (2015) MAPP: the Berkeley model and algorithm prototyping platform. Cust. Integr. Circuits Conf. IEEE, Piscataway Available from:  https://doi.org/10.1109/CICC.2015.7338431

Yang Y, Gao P, Gaba S, Chang T, Pan X, Lu W (2012) Observation of conducting filament growth in nanoscale resistive memories. Nat Commun 3:732 Available from: http://www.nature.com/doifinder/10.1038/ncomms1737

Yang Y, Zhang X, Qin L, Zeng Q, Qiu X, Huang R (2017) Probing nanoscale oxygen ion motion in memristive systems. Nat Commun 8:15173 Nature Publishing Group, Available from: http://www.nature.com/doifinder/10.1038/ncomms15173

Press W, Teukolsky S, Vetterling W, Flannery B (1989) Numerical recipes: the art of scientific computing. Comput. Geosci. Cambridge University Press, Cambridge Available from: http://linkinghub.elsevier.com/retrieve/pii/0098300489901349

Roychowdhury J (2008) Numerical simulation and modelling of electronic and biochemical systems. Found Trends Electron Des Autom 3:97–303 Available from: http://www.nowpublishers.com/product.aspx?product=EDA&doi=1000000009

McPherson J, Kim J-Y, Shanware A, Mogul H (2003) Thermochemical description of dielectric breakdown in high dielectric constant materials. Appl Phys Lett 82:2121–2123 Available from: http://aip.scitation.org/doi/10.1063/1.1565180

Roychowdhury J, Melville R (2006) Delivering global DC convergence for large mixed-signal circuits via homotopy/continuation methods. IEEE Trans Comput Des Integr Circuits Syst 25:66–78 Available from: http://ieeexplore.ieee.org/document/1564305/

Hui F, Grustan-Gutierrez E, Long S, Liu Q, Ott AK, Ferrari AC et al (2017) Graphene and related materials for resistive random access memories. Adv. Electron. Mater. 3:1–32 Available from:  http://onlinelibrary.wiley.com/doi/10.1002/aelm.201600195/abstract

Wang Z, Wang L, Nagai M, Xie L, Yi M, Huang W (2017) Nanoionics-enabled memristive devices: strategies and materials for neuromorphic applications. Adv Electron Mater :3 Available from:  http://onlinelibrary.wiley.com/doi/10.1002/aelm.201600510/abstract

Kim S, Choi S, Lu W (2014) Comprehensive physical model of dynamic resistive switching in an oxide memristor. ACS Nano 8:2369–2376 Available from:  http://pubs.acs.org/doi/abs/10.1021/nn405827t

Wang Y-F, Lin Y-C, Wang I-T, Lin T-P, Hou T-H (2015) Characterization and modeling of nonfilamentary Ta/TaOx/TiO2/Ti analog synaptic device. Sci Rep 5:10150 Available from: http://www.nature.com/articles/srep10150