Midline crossing is not required for subsequent pathfinding decisions in commissural neurons

Neural Development - Tập 7 - Trang 1-13 - 2012
Jennifer Bonner1, Michael Letko1, Oliver Brant Nikolaus2, Lisa Krug1, Alexandria Cooper1, Benjamin Chadwick1, Phoebe Conklin1, Amy Lim2, Chi-Bin Chien2, Richard I Dorsky2
1Biology Department, Skidmore College, Saratoga Springs, USA
2Department of Neurobiology and Anatomy, University of Utah School of Medicine, Salt Lake City, USA

Tóm tắt

Growth cone navigation across the vertebrate midline is critical in the establishment of nervous system connectivity. While midline crossing is achieved through coordinated signaling of attractive and repulsive cues, this has never been demonstrated at the single cell level. Further, though growth cone responsiveness to guidance cues changes after crossing the midline, it is unclear whether midline crossing itself is required for subsequent guidance decisions in vivo. In the zebrafish, spinal commissures are initially formed by a pioneer neuron called CoPA (Co mmissural P rimary A scending). Unlike in other vertebrate models, CoPA navigates the midline alone, allowing for single-cell analysis of axon guidance mechanisms. We provide evidence that CoPA expresses the known axon guidance receptors dcc, robo3 and robo2. Using loss of function mutants and gene knockdown, we show that the functions of these genes are evolutionarily conserved in teleosts and that they are used consecutively by CoPA neurons. We also reveal novel roles for robo2 and robo3 in maintaining commissure structure. When midline crossing is prevented in robo3 mutants and dcc gene knockdown, ipsilaterally projecting neurons respond to postcrossing guidance cues. Furthermore, DCC inhibits Robo2 function before midline crossing to allow a midline approach and crossing. Our results demonstrate that midline crossing is not required for subsequent guidance decisions by pioneer axons and that this is due, in part, to DCC inhibition of Robo2 function prior to midline crossing.

Tài liệu tham khảo

Kennedy TE, Serafini T, de la Torre JR, Tessier-Lavigne M: Netrins are diffusible chemotropic factors for commissural axons in the embryonic spinal cord. Cell. 1994, 78: 425-435. 10.1016/0092-8674(94)90421-9. Charron F, Stein E, Jeong J, McMahon AP, Tessier-Lavigne M: The morphogen sonic hedgehog is an axonal chemoattractant that collaborates with netrin-1 in midline axon guidance. Cell. 2003, 113: 11-23. 10.1016/S0092-8674(03)00199-5. Shirasaki R, Katsumata R, Murakami F: Change in chemoattractant responsiveness of developing axons at an intermediate target. Science. 1998, 279: 105-107. 10.1126/science.279.5347.105. Stein E, Tessier-Lavigne M: Hierarchical organization of guidance receptors: silencing of netrin attraction by slit through a Robo/DCC receptor complex. Science. 2001, 291: 1928-1938. 10.1126/science.1058445. Zou Y, Stoeckli E, Chen H, Tessier-Lavigne M: Squeezing axons out of the gray matter: a role for slit and semaphorin proteins from midline and ventral spinal cord. Cell. 2000, 102: 363-375. 10.1016/S0092-8674(00)00041-6. Itoh A, Miyabayashi T, Ohno M, Sakano S: Cloning and expressions of three mammalian homologues of Drosophila slit suggest possible roles for Slit in the formation and maintenance of the nervous system. Brain Res Mol Brain Res. 1998, 62: 175-186. Brose K, Bland KS, Wang KH, Arnott D, Henzel W, Goodman CS, Tessier-Lavigne M, Kidd T: Slit proteins bind Robo receptors and have an evolutionarily conserved role in repulsive axon guidance. Cell. 1999, 96: 795-806. 10.1016/S0092-8674(00)80590-5. Holmes G, Niswander L: Expression of slit-2 and slit-3 during chick development. Dev Dyn. 2001, 222: 301-307. 10.1002/dvdy.1182. Ypsilanti AR, Zagar Y, Chédotal A: Moving away from the midline: new developments for Slit and Robo. Development. 2010, 137: 1939-1952. 10.1242/dev.044511. Sabatier C, Plump AS, Le Ma, Brose K, Tamada A, Murakami F, Lee EY, Tessier-Lavigne M: The divergent Robo family protein rig-1/Robo3 is a negative regulator of slit responsiveness required for midline crossing by commissural axons. Cell. 2004, 117: 157-169. 10.1016/S0092-8674(04)00303-4. Long H, Sabatier C, Ma L, Plump A, Yuan W, Ornitz DM, Tamada A, Murakami F, Goodman CS, Tessier-Lavigne M: Conserved roles for Slit and Robo proteins in midline commissural axon guidance. Neuron. 2004, 42: 213-223. 10.1016/S0896-6273(04)00179-5. Jaworski A, Long H, Tessier-Lavigne M: Collaborative and specialized functions of Robo1 and Robo2 in spinal commissural axon guidance. J Neurosci. 2010, 30: 9445-9453. Yuan SS, Cox LA, Dasika GK, Lee EY: Cloning and functional studies of a novel gene aberrantly expressed in RB-deficient embryos. Dev Biol. 1999, 207: 62-75. 10.1006/dbio.1998.9141. Challa AK, Beattie CE, Seeger MA: Identification and characterization of roundabout orthologs in zebrafish. Mech Dev. 2001, 101: 249-253. 10.1016/S0925-4773(00)00570-0. Lee JS, Ray R, Chien CB: Cloning and expression of three zebrafish roundabout homologs suggest roles in axon guidance and cell migration. Dev Dyn. 2001, 221: 216-230. 10.1002/dvdy.1136. Challa AK, McWhorter ML, Wang C, Seeger MA, Beattie CE: Robo3 isoforms have distinct roles during zebrafish development. Mech Dev. 2005, 122: 1073-1086. 10.1016/j.mod.2005.06.006. Camurri L, Mambetisaeva E, Davies D, Parnavelas J, Sundaresan V, Andrews W: Evidence for the existence of two Robo3 isoforms with divergent biochemical properties. Mol Cell Neurosci. 2005, 30: 485-493. 10.1016/j.mcn.2005.07.014. Chen Z, Gore BB, Long H, Ma L, Tessier-Lavigne M: Alternative splicing of the Robo3 axon guidance receptor governs the midline switch from attraction to repulsion. Neuron. 2008, 58: 325-332. 10.1016/j.neuron.2008.02.016. Jen JC, Chan WM, Bosley TM, Wan J, Carr JR, Rüb U, Shattuck D, Salamon G, Kudo LC, Ou J, Lin DD, Salih MA, Kansu T, Al Dhalaan H, Al Zayed Z, MacDonald DB, Stigsby B, Plaitakis A, Dretakis EK, Gottlob I, Pieh C, Traboulsi EI, Wang Q, Wang L, Andrews C, Yamada K, Demer JL, Karim S, Alger JR, Geschwind DH, Deller T, Sicotte NL, Nelson SF, Baloh RW, Engle EC: Mutations in a human ROBO gene disrupt hindbrain axon pathway crossing and morphogenesis. Science. 2004, 304: 1509-1513. 10.1126/science.1096437. Kuwako K, Kakumoto K, Imai T, Igarashi M, Hamakubo T, Sakakibara S, Tessier-Lavigne M, Okano HJ, Okano H: Neural RNA-binding protein Musashi1 controls midline crossing of precerebellar neurons through posttranscriptional regulation of Robo3/Rig-1 expression. Neuron. 2010, 67: 407-421. 10.1016/j.neuron.2010.07.005. Bernhardt RR, Chitnis AB, Lindamer L, Kuwada JY: Identification of spinal neurons in the embryonic and larval zebrafish. J Comp Neurol. 1990, 302: 603-616. 10.1002/cne.903020315. Kuwada JY, Bernhardt RR, Nguyen N: Development of spinal neurons and tracts in the zebrafish embryo. J Comp Neurol. 1990, 302: 617-628. 10.1002/cne.903020316. Bronchain OJ, Hartley KO, Amaya E: A gene trap approach in Xenopus. Curr Biol. 1999, 9: 1195-1198. 10.1016/S0960-9822(00)80025-1. Myers PZ, Eisen JS, Westerfield M: Development and axonal outgrowth of identified motoneurons in the zebrafish. J Neurosci. 1986, 6: 2278-2289. Bernhardt RR, Patel CK, Wilson SW, Kuwada JY: Axonal trajectories and distribution of GABAergic spinal neurons in wildtype and mutant zebrafish lacking floor plate cells. J Comp Neurol. 1992, 326: 263-272. 10.1002/cne.903260208. Hale ME, Ritter DA, Fetcho JR: A confocal study of spinal interneurons in living larval zebrafish. J Comp Neurol. 2001, 437: 1-16. 10.1002/cne.1266. Downes GB, Waterbury JA, Granato M: Rapid in vivo labeling of identified zebrafish neurons. Genesis. 2002, 34: 196-202. 10.1002/gene.10120. Serafini T, Colamarino SA, Leonardo ED, Wang H, Beddington R, Skarnes WC, Tessier-Lavigne M: Netrin-1 is required for commissural axon guidance in the developing vertebrate nervous system. Cell. 1996, 87: 1001-1014. 10.1016/S0092-8674(00)81795-X. McWhorter ML, Monani UR, Burghes AH, Beattie CE: Knockdown of the survival motor neuron (Smn) protein in zebrafish causes defects in motor axon outgrowth and pathfinding. J Cell Biol. 2003, 162: 919-931. 10.1083/jcb.200303168. Yeo SY, Miyashita T, Fricke C, Little MH, Yamada T, Kuwada JY, Huh TL, Chien CB, Okamoto H: Involvement of Islet-2 in the Slit signaling for axonal branching and defasciculation of the sensory neurons in embryonic zebrafish. Mech Dev. 2004, 121: 315-324. 10.1016/j.mod.2004.03.006. Patten SA, Ali DW: AMPA receptors associated with zebrafish Mauthner cells switch subunits during development. J Physiol. 2007, 581 (Pt 3): 1043-1056. Kastenhuber E, Kern U, Bonkowsky JL, Chien CB, Driever W, Schweitzer J: Netrin-DCC, Robo-Slit, and heparan sulfate proteoglycans coordinate lateral positioning of longitudinal dopaminergic diencephalospinal axons. J Neurosci. 2009, 29: 8914-8926. 10.1523/JNEUROSCI.0568-09.2009. Fricke C, Lee JS, Geiger-Rudolph S, Bonhoeffer F, Chien CB: astray, a zebrafish roundabout homolog required for retinal axon guidance. Science. 2001, 292: 507-510. 10.1126/science.1059496. Hutson LD, Chien CB: Pathfinding and error correction by retinal axons: the role of astray/robo2. Neuron. 2002, 33: 205-217. 10.1016/S0896-6273(01)00579-7. Campbell DS, Stringham SA, Timm A, Xiao T, Law MY, Baier H, Nonet ML, Chien CB: Slit1a inhibits retinal ganglion cell arborization and synaptogenesis via Robo2-dependent and -independent pathways. Neuron. 2007, 55: 231-245. 10.1016/j.neuron.2007.06.034. Chalasani SH, Sabol A, Xu H, Gyda MA, Rasband K, Granato M, Chien CB, Raper JA: Stromal cell-derived factor-1 antagonizes slit/robo signaling in vivo. J Neurosci. 2007, 27: 973-980. 10.1523/JNEUROSCI.4132-06.2007. Devine CA, Key B: Robo-Slit interactions regulate longitudinal axon pathfinding in the embryonic vertebrate brain. Dev Biol. 2008, 313: 371-383. 10.1016/j.ydbio.2007.10.040. Suli A, Mortimer N, Shepherd I, Chien CB: Netrin/DCC signaling controls contralateral dendrites of octavolateralis efferent neurons. J Neurosci. 2006, 26: 13328-13337. 10.1523/JNEUROSCI.2858-06.2006. Burgess HA, Johnson SL, Granato M: Unidirectional startle responses and disrupted left-right co-ordination of motor behaviors in robo3 mutant zebrafish. Genes Brain Behav. 2009, 8: 500-511. 10.1111/j.1601-183X.2009.00499.x. Höpker VH, Shewan D, Tessier-Lavigne M, Poo M, Holt C: Growth-cone attraction to netrin-1 is converted to repulsion by laminin-1. Nature. 1999, 401: 69-73. 10.1038/43441. Diefenbach TJ, Guthrie PB, Kater SB: Stimulus history alters behavioral responses of neuronal growth cones. J Neurosci. 2000, 20: 1484-1494. Ming GL, Wong ST, Henley J, Yuan XB, Song HJ, Spitzer NC, Poo MM: Adaptation in the chemotactic guidance of nerve growth cones. Nature. 2002, 417: 411-418. 10.1038/nature745. Evans TA, Bashaw GJ: Axon guidance at the midline: of mice and flies. Curr Opin Neurobiol. 2010, 20: 79-85. 10.1016/j.conb.2009.12.006. Serafini T, Kennedy TE, Galko MJ, Mirzayan C, Jessell TM, Tessier-Lavigne M: The netrins define a family of axon outgrowth-promoting proteins homologous to C. elegans UNC-6. Cell. 1994, 78: 409-424. 10.1016/0092-8674(94)90420-0. Fazeli A, Dickinson SL, Hermiston ML, Tighe RV, Steen RG, Small CG, Stoeckli ET, Keino-Masu K, Masu M, Rayburn H, Simons J, Bronson RT, Gordon JI, Tessier-Lavigne M, Weinberg RA: Phenotype of mice lacking functional Deleted in colorectal cancer (Dcc) gene. Nature. 1997, 386: 796-804. 10.1038/386796a0. Augsburger A, Schuchardt A, Hoskins S, Dodd J, Butler S: BMPs as mediators of roof plate repulsion of commissural neurons. Neuron. 1999, 24: 127-141. 10.1016/S0896-6273(00)80827-2. Yimlamai D, Konnikova L, Moss LG, Jay DG: The zebrafish down syndrome cell adhesion molecule is involved in cell movement during embryogenesis. Dev Biol. 2005, 279: 44-57. 10.1016/j.ydbio.2004.12.001. Andrews GL, Tanglao S, Farmer WT, Morin S, Brotman S, Berberoglu MA, Price H, Fernandez GC, Mastick GS, Charron F, Kidd T: Dscam guides embryonic axons by Netrin-dependent and -independent functions. Development. 2008, 135: 3839-3848. 10.1242/dev.023739. Ly A, Nikolaev A, Suresh G, Zheng Y, Tessier-Lavigne M, Stein E: DSCAM is a netrin receptor that collaborates with DCC in mediating turning responses to netrin-1. Cell. 2008, 133: 1241-1254. 10.1016/j.cell.2008.05.030. Liu G, Li W, Wang L, Kar A, Guan KL, Rao Y, Wu JY: DSCAM functions as a netrin receptor in commissural axon pathfinding. Proc Natl Acad Sci U S A. 2009, 106: 2951-2956. 10.1073/pnas.0811083106. Mambetisaeva ET, Andrews W, Camurri L, Annan A, Sundaresan V: Robo family of proteins exhibit differential expression in mouse spinal cord and Robo-Slit interaction is required for midline crossing in vertebrate spinal cord. Dev Dyn. 2005, 233: 41-51. 10.1002/dvdy.20324. Reeber SL, Sakai N, Nakada Y, Dumas J, Dobrenis K, Johnson JE, Kaprielian Z: Manipulating Robo expression in vivo perturbs commissural axon pathfinding in the chick spinal cord. J Neurosci. 2008, 28: 8698-8708. 10.1523/JNEUROSCI.1479-08.2008. Gore BB, Wong KG, Tessier-Lavigne M: Stem cell factor functions as an outgrowth-promoting factor to enable axon exit from the midline intermediate target. Neuron. 2008, 57: 501-510. 10.1016/j.neuron.2008.01.006. Sánchez-Camacho C, Bovolenta P: Emerging mechanisms in morphogen-mediated axon guidance. Bioessays. 2009, 31: 1013-1025. 10.1002/bies.200900063. Karlstrom RO, Trowe T, Klostermann S, Baier H, Brand M, Crawford AD, Grunewald B, Haffter P, Hoffmann H, Meyer SU, Müller BK, Richter S, van Eeden FJ, Nüsslein-Volhard C, Bonhoeffer F: Zebrafish mutations affecting retinotectal axon pathfinding. Development. 1996, 123: 427-438. Ringstedt T, Braisted JE, Brose K, Kidd T, Goodman C, Tessier-Lavigne M, O'Leary DD: Slit inhibition of retinal axon growth and its role in retinal axon pathfinding and innervation patterns in the diencephalon. J Neurosci. 2000, 20: 4983-4991. Niclou SP, Jia L, Raper JA: Slit2 is a repellent for retinal ganglion cell axons. J Neurosci. 2000, 20: 4962-4974. Plump AS, Erskine L, Sabatier C, Brose K, Epstein CJ, Goodman CS, Mason CA, Tessier-Lavigne M: Slit1 and Slit2 cooperate to prevent premature midline crossing of retinal axons in the mouse visual system. Neuron. 2002, 33: 219-232. 10.1016/S0896-6273(01)00586-4. Plachez C, Andrews W, Liapi A, Knoell B, Drescher U, Mankoo B, Zhe L, Mambetisaeva E, Annan A, Bannister L, Parnavelas JG, Richards LJ, Sundaresan V: Robos are required for the correct targeting of retinal ganglion cell axons in the visual pathway of the brain. Mol Cell Neurosci. 2008, 37: 719-730. 10.1016/j.mcn.2007.12.017. Bagri A, Marín O, Plump AS, Mak J, Pleasure SJ, Rubenstein JL, Tessier-Lavigne M: Slit proteins prevent midline crossing and determine the dorsoventral position of major axonal pathways in the mammalian forebrain. Neuron. 2002, 33: 233-248. 10.1016/S0896-6273(02)00561-5. Shu T, Sundaresan V, McCarthy MM, Richards LJ: Slit2 guides both precrossing and postcrossing callosal axons at the midline in vivo. J Neurosci. 2003, 23: 8176-8184. Barresi MJ, Hutson LD, Chien CB, Karlstrom RO: Hedgehog regulated Slit expression determines commissure and glial cell position in the zebrafish forebrain. Development. 2005, 132: 3643-3656. 10.1242/dev.01929. López-Bendito G, Flames N, Ma L, Fouquet C, Di Meglio T, Chedotal A, Tessier-Lavigne M, Marín O: Robo1 and Robo2 cooperate to control the guidance of major axonal tracts in the mammalian forebrain. J Neurosci. 2007, 27: 3395-3407. 10.1523/JNEUROSCI.4605-06.2007. Hutson LD, Jurynec MJ, Yeo SY, Okamoto H, Chien CB: Two divergent slit1 genes in zebrafish. Dev Dyn. 2003, 228: 358-369. 10.1002/dvdy.10386. Granato M, van Eeden FJ, Schach U, Trowe T, Brand M, Furutani-Seiki M, Haffter P, Hammerschmidt M, Heisenberg CP, Jiang YJ, Kane DA, Kelsh RN, Mullins MC, Odenthal J, Nüsslein-Volhard C: Genes controlling and mediating locomotion behavior of the zebrafish embryo and larva. Development. 1996, 123: 399-413. Jowett T, Lettice L: Whole-mount in situ hybridizations on zebrafish embryos using a mixture of digoxigenin- and fluorescein-labeled probes. Trends Genet. 1994, 10: 73-74. 10.1016/0168-9525(94)90220-8.