In situ–Directed Growth of Organic Nanofibers and Nanoflakes: Electrical and Morphological Properties

Roana Melina de Oliveira Hansen1, Morten Madsen1, Jakob Kjelstrup‐Hansen1, Horst‐Günter Rubahn1
1NanoSYD, Mads Clausen Institute, University of Southern Denmark, Sønderborg, Denmark

Tóm tắt

AbstractOrganic nanostructures made from organic molecules such as para-hexaphenylene (p-6P) could form nanoscale components in future electronic and optoelectronic devices. However, the integration of such fragile nanostructures with the necessary interface circuitry such as metal electrodes for electrical connection continues to be a significant hindrance toward their large-scale implementation. Here, we demonstrate in situ–directed growth of such organic nanostructures between pre-fabricated contacts, which are source–drain gold electrodes on a transistor platform (bottom-gate) on silicon dioxide patterned by a combination of optical lithography and electron beam lithography. The dimensions of the gold electrodes strongly influence the morphology of the resulting structures leading to notably different electrical properties. The ability to control such nanofiber or nanoflake growth opens the possibility for large-scale optoelectronic device fabrication.

Từ khóa


Tài liệu tham khảo

Monat C, Domachuk P, Eggleton BJ: Nat Photonics. 2007, 1: 106–114. 10.1038/nphoton.2006.96

Agarwal R, Lieber CM: Appl Phys A: Mater Sci Process. 2006, 85: 209–215. 10.1007/s00339-006-3720-z

Boukai AI, Bunimovich Y, Tahir-Kheli J, Yu J-K, Goddard III WA, Heath JR: Nature. 2008, 451: 168–171. 10.1038/nature06458

Moran-Mirabal J, et al.: Nano Lett. 2007,7(2):458–463. 10.1021/nl062778+

Zaumseil J, Friend J, Sirringhaus H: Nat Mater. 2006, 5: 69. 10.1038/nmat1537

Minot ED, et al.: Nano Lett. 2007,7(2):367–371. 10.1021/nl062483w

Duan X, Huang Y, Agarwal R, Lieber CM: Nature. 2003, 421: 241–245. 10.1038/nature01353

Law JBK, Thong JTL: Appl Phys Lett. 2006, 88: 133114. 10.1063/1.2190459

Fan Z, et al.: Nano Lett. 2008,8(1):20–25. 10.1021/nl071626r

Svensson CPT, et al.: Nanotechnology. 2008, 19: 305201. 10.1088/0957-4484/19/30/305201

Müllen K, Scherf U: Organic Ligth Emitting Devices. Wiley-VCH Weinheim, London; 2005. 10.1002/3527607986

Hoppe H, Sariciftci NS: J Mater Res. 2004, 19: 1924–1945. 10.1557/JMR.2004.0252

Lim SJ, An BK, Jung SD, Chung MA, Park SY: Angew Chem Int Ed. 2004, 43: 6346–6350. 10.1002/anie.200461172

Zheng KB, Shen HT, Ye CN, Li JL, Sun DL, Chen GR: Nano-Micro Lett. 2009, 1: 23–26.

Ryu J, Kim S-W, Kang K, Park CB: ACS Nano. 2010, 4: 159–164. 10.1021/nn901156w

Balzer F, Rubahn H-G: Appl Phys Lett. 2001, 79: 3860–3862. 10.1063/1.1424071

Balzer F, Rubahn H-G: Nano Lett. 2002, 2: 747. 10.1021/nl0255707

Balzer F, Rubahn H-G: Adv Func Mat. 2005, 15: 17. 10.1002/adfm.200400367

Balzer F, Bordo VG, Simonsen AC, Rubahn H-G: Phys Rev B: Condens Mat. 2003, 67: 115408. 10.1103/PhysRevB.67.115408

Quochi F, Cordella F, Mura A, Bongiovanni G, Balzer F, Rubahn H-G: J Phys Chem B. 2005, 109: 21690. 10.1021/jp054324r

Balzer F, Kankate L, Niehus H, Frese R, Maibohm C, Rubahn H-G: Nanotechnology. 2006, 17: 984–991. 10.1088/0957-4484/17/4/024

Madsen M, Kjelstrup-Hansen J, Rubahn H-G: Nanotechnology. 2009, 20: 115601/1–5. 10.1088/0957-4484/20/11/115601

de RM, Hansen O, Kjelstrup-Hansen J, Rubahn HG: Nanoscale. 2010, 2: 134–138. 10.1039/b9nr00206e

Madsen M, Kartopu G, Andersen NL, Es-Souni M, Rubahn H-G: Appl Phys A. 2009, 96: 591–594. 10.1007/s00339-009-5095-4

Chua LL, Ho PKH, Sirringhaus H, Friend RH: Appl Phys Lett. 2004, 84: 3400. 10.1063/1.1710716

Frank DJ, Dennard RH, Nowak E, Solomon PM, Taur Y, Wong HSP: Proc IEEE. 2001, 89: 259. 10.1109/5.915374

Jung T, Dodabalapur A, Wenz R, Mahapatra S: Appl Phys Lett. 2005, 87: 182109. 10.1063/1.2117629

Schiek M, Balzer F, Al-Shamery K, Brewer JR, Lützen A, Rubahn H-G: Small. 2008, 4: 176. 10.1002/smll.200700483