Heavy colored SUSY partners from deflected anomaly mediation
Tóm tắt
We propose a deflected anomaly mediation scenario from SUSY QCD which can lead to both positive and negative deflection parameters (there is a smooth transition between these two deflection parameter regions by adjusting certain couplings). Such a scenario can naturally give a SUSY spectrum in which all the colored sparticles are heavy while the sleptons are light. As a result, the discrepancy between the Brookheaven g
μ
− 2 experiment and LHC data can be reconciled in this scenario. We also find that the parameter space for explaining the g
μ
− 2 anomaly at 1σ level can be fully covered by the future LUX-ZEPLIN 7.2 Ton experiment.
Tài liệu tham khảo
ATLAS collaboration, Combined search for the Standard Model Higgs boson using up to 4.9 fb−1 of pp collision data at \( \sqrt{s}=7 \) TeV with the ATLAS detector at the LHC, Phys. Lett. B 710 (2012) 49 [arXiv:1202.1408] [INSPIRE].
CMS collaboration, Combined results of searches for the standard model Higgs boson in pp collisions at \( \sqrt{s}=7 \) TeV, Phys. Lett. B 710 (2012) 26 [arXiv:1202.1488] [INSPIRE].
J. Cao, Z. Heng, J.M. Yang and J. Zhu, Status of low energy SUSY models confronted with the LHC 125 GeV Higgs data, JHEP 10 (2012) 079 [arXiv:1207.3698] [INSPIRE].
J.-J. Cao, Z.-X. Heng, J.M. Yang, Y.-M. Zhang and J.-Y. Zhu, A SM-like Higgs near 125 GeV in low energy SUSY: a comparative study for MSSM and NMSSM, JHEP 03 (2012) 086 [arXiv:1202.5821] [INSPIRE].
Muon g-2 collaboration, G.W. Bennett et al., Final Report of the Muon E821 Anomalous Magnetic Moment Measurement at BNL, Phys. Rev. D 73 (2006) 072003 [hep-ex/0602035] [INSPIRE].
B.L. Roberts, Status of the Fermilab Muon (g − 2) Experiment, Chin. Phys. C 34 (2010) 741 [arXiv:1001.2898] [INSPIRE].
K. Hagiwara, A.D. Martin, D. Nomura and T. Teubner, Improved predictions for g − 2 of the muon and αQED(M 2 Z ), Phys. Lett. B 649 (2007) 173 [hep-ph/0611102] [INSPIRE].
T. Teubner, K. Hagiwara, R. Liao, A.D. Martin and D. Nomura, Update of g − 2 of the Muon and Delta Alpha, Chin. Phys. C 34 (2010) 728 [arXiv:1001.5401] [INSPIRE].
M. Davier et al., The Discrepancy Between tau and e+e− Spectral Functions Revisited and the Consequences for the Muon Magnetic Anomaly, Eur. Phys. J. C 66 (2010) 127 [arXiv:0906.5443] [INSPIRE].
M. Davier, A. Hoecker, B. Malaescu, C.Z. Yuan and Z. Zhang, Reevaluation of the hadronic contribution to the muon magnetic anomaly using new e+e− → π+π− cross section data from BABAR, Eur. Phys. J. C 66 (2010) 1 [arXiv:0908.4300] [INSPIRE].
ATLAS collaboration, Search for squarks and gluinos using final states with jets and missing transverse momentum with the ATLAS detector in \( \sqrt{s}=7 \) TeV proton-proton collisions, Phys. Lett. B 710 (2012) 67 [arXiv:1109.6572] [INSPIRE].
ATLAS collaboration, Search for squarks and gluinos with the ATLAS detector in final states with jets and missing transverse momentum using 4.7 fb−1 of \( \sqrt{s}=7 \) TeV proton-proton collision data, Phys. Rev. D 87 (2013) 012008 [arXiv:1208.0949] [INSPIRE].
CMS collaboration, Search for Supersymmetry at the LHC in Events with Jets and Missing Transverse Energy, Phys. Rev. Lett. 107 (2011) 221804 [arXiv:1109.2352] [INSPIRE].
CMS collaboration, Search for supersymmetry in hadronic final states using MT2 in pp collisions at \( \sqrt{s}=7 \) TeV, JHEP 10 (2012) 018 [arXiv:1207.1798] [INSPIRE].
C. Han, K.-i. Hikasa, L. Wu, J.M. Yang and Y. Zhang, Current experimental bounds on stop mass in natural SUSY, JHEP 10 (2013) 216 [arXiv:1308.5307] [INSPIRE].
ATLAS collaboration, Search for supersymmetry in events containing a same-flavour opposite-sign dilepton pair, jets and large missing transverse momentum in \( \sqrt{s}=8 \) TeV pp collisions with the ATLAS detector, Eur. Phys. J. C 75 (2015) 318 [arXiv:1503.03290] [INSPIRE].
G. Barenboim, J. Bernabeu, V.A. Mitsou, E. Romero, E. Torro and O. Vives, METing SUSY on the Z peak, arXiv:1503.04184 [INSPIRE].
U. Ellwanger, Possible explanation of excess events in the search for jets, missing transverse momentum and a Z boson in pp collisions, arXiv:1504.02244 [INSPIRE].
B. Allanach, A. Raklev and A. Kvellestad, Consistency of the recent ATLAS Z + E miss T excess in a simplified GGM model, Phys. Rev. D 91 (2015) 095016 [arXiv:1504.02752] [INSPIRE].
A. Kobakhidze, A. Saavedra, L. Wu and J.M. Yang, ATLAS Z-peaked excess in MSSM with a light sbottom or stop, arXiv:1504.04390 [INSPIRE].
J. Cao, L. Shang, J.M. Yang and Y. Zhang, Explanation of the ATLAS Z-Peaked Excess in the NMSSM, JHEP 06 (2015) 152 [arXiv:1504.07869] [INSPIRE].
J.L. Lopez, D.V. Nanopoulos and X. Wang, Large (g − 2) μ in SU(5) × U(1) supergravity models, Phys. Rev. D 49 (1994) 366 [hep-ph/9308336] [INSPIRE].
U. Chattopadhyay and P. Nath, Probing supergravity grand unification in the Brookhaven g−2 experiment, Phys. Rev. D 53 (1996) 1648 [hep-ph/9507386] [INSPIRE].
J. Cao, Z. Heng, D. Li and J.M. Yang, Current experimental constraints on the lightest Higgs boson mass in the constrained MSSM, Phys. Lett. B 710 (2012) 665 [arXiv:1112.4391] [INSPIRE].
S. Akula and P. Nath, Gluino-driven radiative breaking, Higgs boson mass, muon g − 2 and the Higgs diphoton decay in supergravity unification, Phys. Rev. D 87 (2013) 115022 [arXiv:1304.5526] [INSPIRE].
F. Wang, W. Wang and J.M. Yang, Reconcile muon g −2 anomaly with LHC data in SUGRA with generalized gravity mediation, JHEP 06 (2015) 079 [arXiv:1504.00505] [INSPIRE].
J. Chakrabortty, A. Choudhury and S. Mondal, Non-universal Gaugino mass models under the lamppost of muon (g − 2), arXiv:1503.08703 [INSPIRE].
K. Kowalska, L. Roszkowski, E.M. Sessolo and A.J. Williams, GUT-inspired SUSY and the muon g − 2 anomaly: prospects for LHC 14 TeV, JHEP 06 (2015) 020 [arXiv:1503.08219] [INSPIRE].
K. Harigaya, T.T. Yanagida and N. Yokozaki, Higgs boson mass of 125 GeV and g − 2 of the muon in a gaugino mediation model, Phys. Rev. D 91 (2015) 075010 [arXiv:1501.07447] [INSPIRE].
M. Adeel Ajaib, I. Gogoladze and Q. Shafi, GUT-inspired supersymmetric model for h → γγ and the muon g − 2, Phys. Rev. D 91 (2015) 095005 [arXiv:1501.04125] [INSPIRE].
F.F. Deppisch, N. Desai and T.E. Gonzalo, Compressed and Split Spectra in Minimal SUSY SO(10), Front. Phys. 2 (2014) 00027 [arXiv:1403.2312] [INSPIRE].
T. Li and S. Raza, Electroweak supersymmetry from the generalized minimal supergravity model in the MSSM, Phys. Rev. D 91 (2015) 055016 [arXiv:1409.3930] [INSPIRE].
M. Bach, J.-h. Park, D. Stöckinger and H. Stöckinger-Kim, Large muon (g − 2) with TeV-scale SUSY masses for tan β → ∞, arXiv:1504.05500 [INSPIRE].
L. Randall and R. Sundrum, Out of this world supersymmetry breaking, Nucl. Phys. B 557 (1999) 79 [hep-th/9810155] [INSPIRE].
G.F. Giudice, M.A. Luty, H. Murayama and R. Rattazzi, Gaugino mass without singlets, JHEP 12 (1998) 027 [hep-ph/9810442] [INSPIRE].
A. Pomarol and R. Rattazzi, Sparticle masses from the superconformal anomaly, JHEP 05 (1999) 013 [hep-ph/9903448] [INSPIRE].
I. Jack and D.R.T. Jones, RG invariant solutions for the soft supersymmetry breaking parameters, Phys. Lett. B 465 (1999) 148 [hep-ph/9907255] [INSPIRE].
E. Katz, Y. Shadmi and Y. Shirman, Heavy thresholds, slepton masses and the mu term in anomaly mediated supersymmetry breaking, JHEP 08 (1999) 015 [hep-ph/9906296] [INSPIRE].
N. Okada, Positively deflected anomaly mediation, Phys. Rev. D 65 (2002) 115009 [hep-ph/0202219] [INSPIRE].
N. Abe and M. Endo, Recent muon g − 2 result in deflected anomaly mediated supersymmetry breaking, Phys. Lett. B 564 (2003) 73 [hep-ph/0212002] [INSPIRE].
L.M. Carpenter, Minimal deflected anomaly mediation, hep-ph/0510406 [INSPIRE].
M. Dine, W. Fischler and M. Srednicki, Supersymmetric Technicolor, Nucl. Phys. B 189 (1981) 575 [INSPIRE].
S. Dimopoulos and S. Raby, Supercolor, Nucl. Phys. B 192 (1981) 353 [INSPIRE].
M. Dine and W. Fischler, A Phenomenological Model of Particle Physics Based on Supersymmetry, Phys. Lett. B 110 (1982) 227 [INSPIRE].
M. Dine and A.E. Nelson, Dynamical supersymmetry breaking at low-energies, Phys. Rev. D 48 (1993) 1277 [hep-ph/9303230] [INSPIRE].
M. Dine, A.E. Nelson and Y. Shirman, Low-energy dynamical supersymmetry breaking simplified, Phys. Rev. D 51 (1995) 1362 [hep-ph/9408384] [INSPIRE].
M. Dine, A.E. Nelson, Y. Nir and Y. Shirman, New tools for low-energy dynamical supersymmetry breaking, Phys. Rev. D 53 (1996) 2658 [hep-ph/9507378] [INSPIRE].
G.F. Giudice and R. Rattazzi, Theories with gauge mediated supersymmetry breaking, Phys. Rept. 322 (1999) 419 [hep-ph/9801271] [INSPIRE].
A.H. Chamseddine, R.L. Arnowitt and P. Nath, Locally Supersymmetric Grand Unification, Phys. Rev. Lett. 49 (1982) 970 [INSPIRE].
H.P. Nilles, Dynamically Broken Supergravity and the Hierarchy Problem, Phys. Lett. B 115 (1982) 193 [INSPIRE].
L.E. Ibáñez, Locally Supersymmetric SU(5) Grand Unification, Phys. Lett. B 118 (1982) 73 [INSPIRE].
R. Barbieri, S. Ferrara and C.A. Savoy, Gauge Models with Spontaneously Broken Local Supersymmetry, Phys. Lett. B 119 (1982) 343 [INSPIRE].
H.P. Nilles, M. Srednicki and D. Wyler, Weak Interaction Breakdown Induced by Supergravity, Phys. Lett. B 120 (1983) 346 [INSPIRE].
J.R. Ellis, D.V. Nanopoulos and K. Tamvakis, Grand Unification in Simple Supergravity, Phys. Lett. B 121 (1983) 123 [INSPIRE].
J.R. Ellis, J.S. Hagelin, D.V. Nanopoulos and K. Tamvakis, Weak Symmetry Breaking by Radiative Corrections in Broken Supergravity, Phys. Lett. B 125 (1983) 275 [INSPIRE].
N. Ohta, Grand unified theories based on local supersymmetry, Prog. Theor. Phys. 70 (1983) 542 [INSPIRE].
L.J. Hall, J.D. Lykken and S. Weinberg, Supergravity as the Messenger of Supersymmetry Breaking, Phys. Rev. D 27 (1983) 2359 [INSPIRE].
M. Dine and N. Seiberg, Comments on quantum effects in supergravity theories, JHEP 03 (2007) 040 [hep-th/0701023] [INSPIRE].
D. Sanford and Y. Shirman, Anomaly Mediation from Randall-Sundrum to Dine-Seiberg, Phys. Rev. D 83 (2011) 125020 [arXiv:1012.1860] [INSPIRE].
E. Cremmer, S. Ferrara, L. Girardello and A. Van Proeyen, Yang-Mills Theories with Local Supersymmetry: Lagrangian, Transformation Laws and SuperHiggs Effect, Nucl. Phys. B 212 (1983) 413 [INSPIRE].
I. Jack and D.R.T. Jones, Fayet-Iliopoulos D terms and anomaly mediated supersymmetry breaking, Phys. Lett. B 482 (2000) 167 [hep-ph/0003081] [INSPIRE].
Z. Chacko, M.A. Luty, I. Maksymyk and E. Ponton, Realistic anomaly mediated supersymmetry breaking, JHEP 04 (2000) 001 [hep-ph/9905390] [INSPIRE].
K.A. Intriligator, N. Seiberg and D. Shih, Dynamical SUSY breaking in meta-stable vacua, JHEP 04 (2006) 021 [hep-th/0602239] [INSPIRE].
E. Witten, Constraints on Supersymmetry Breaking, Nucl. Phys. B 202 (1982) 253 [INSPIRE].
R. Rattazzi, A. Strumia and J.D. Wells, Phenomenology of deflected anomaly mediation, Nucl. Phys. B 576 (2000) 3 [hep-ph/9912390] [INSPIRE].
Muon g-2 collaboration, G.W. Bennett et al., Measurement of the negative muon anomalous magnetic moment to 0.7 ppm, Phys. Rev. Lett. 92 (2004) 161802 [hep-ex/0401008] [INSPIRE].
Muon g-2 collaboration, G.W. Bennett et al., Final Report of the Muon E821 Anomalous Magnetic Moment Measurement at BNL, Phys. Rev. D 73 (2006) 072003 [hep-ex/0602035] [INSPIRE].
T. Moroi, The Muon anomalous magnetic dipole moment in the minimal supersymmetric standard model, Phys. Rev. D 53 (1996) 6565 [Erratum ibid. D 56 (1997) 4424] [hep-ph/9512396] [INSPIRE].
N. Okada and H.M. Tran, Positively deflected anomaly mediation in the light of the Higgs boson discovery, Phys. Rev. D 87 (2013) 035024 [arXiv:1212.1866] [INSPIRE].
G. Altarelli and R. Barbieri, Vacuum polarization effects of new physics on electroweak processes, Phys. Lett. B 253 (1991) 161 [INSPIRE].
M.E. Peskin and T. Takeuchi, Estimation of oblique electroweak corrections, Phys. Rev. D 46 (1992) 381 [INSPIRE].
SLD Electroweak Group, DELPHI, ALEPH, SLD, SLD Heavy Flavour Group, OPAL, LEP Electroweak Working Group, L3 collaborations, S. Schael et al., Precision electroweak measurements on the Z resonance, Phys. Rept. 427 (2006) 257 [hep-ex/0509008] [INSPIRE].
Planck collaboration, P.A.R. Ade et al., Planck 2013 results. XVI. Cosmological parameters, Astron. Astrophys. 571 (2014) A16 [arXiv:1303.5076] [INSPIRE].
WMAP collaboration, J. Dunkley et al., Five-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Likelihoods and Parameters from the WMAP data, Astrophys. J. Suppl. 180 (2009) 306 [arXiv:0803.0586] [INSPIRE].
ATLAS, CMS collaborations, Combined Measurement of the Higgs Boson Mass in pp Collisions at \( \sqrt{s}=7 \) and 8 TeV with the ATLAS and CMS Experiments, Phys. Rev. Lett. 114 (2015) 191803 [arXiv:1503.07589] [INSPIRE].
LUX collaboration, D.S. Akerib et al., First results from the LUX dark matter experiment at the Sanford Underground Research Facility, Phys. Rev. Lett. 112 (2014) 091303 [arXiv:1310.8214] [INSPIRE].
XENON100 collaboration, E. Aprile et al., Dark Matter Results from 225 Live Days of XENON100 Data, Phys. Rev. Lett. 109 (2012) 181301 [arXiv:1207.5988] [INSPIRE].
LUX-Zeplin collaboration, http://lz.lbl.gov/detector/.