Azaphilones produced by Penicillium maximae with their cell death-inducing activity on Adriamycin-treated cancer cell
Tóm tắt
Heat shock proteins (Hsps) are overexpressed in several tumors and contribute to cell proliferation, metastasis, and anticancer drug resistance. Therefore, Hsp inhibitors have enhanced cytotoxicity as chemotherapeutic agents and may be effective with a reduced dosage for tumor therapy to avoid side effects. Four new azaphilones, maximazaphilones I–IV (1–4), and three known compounds (5–7) have been isolated from the airborne-derived fungus Penicillium maximae. Inhibitory effects of isolated compounds against induction of Hsp105 were evaluated by the luciferase assay system using Hsp105 promoter. In this assay, 2–4, 6, and 7 significantly inhibited hsp105 promoter activity without cytotoxicity. In addition, all isolated compounds except for 5 significantly induced the death of Adriamycin (ADR)-treated HeLa cells. Interestingly, 1–4, 6, and 7 didn’t show anti-proliferative and cell death-inducing activity without ADR. This study revealed the chemical structures of maximazaphilones I–IV (1–4) and the potency of azaphilones may be useful for cancer treatment and reducing the dose of anticancer agents. In addition, one of the mechanisms of cell death-inducing activity for 2–4, 6, and 7 was suggested to be inhibitory effects of Hsp105 expression.
Tài liệu tham khảo
Lee HJ, Min HY, Yong YS, Ann J, Nguyen CT, La MT, Hyun SY, Le HT, Kim H, Kwon H, Nam G, Park HJ, Lee J, Lee HY. A novel C-terminal heat shock protein 90 inhibitor that overcomes STAT3-Wnt-b-catenin signaling-mediated drug resistance and adverse effects. Theranostics. 2022;12:105–25. https://doi.org/10.7150/thno.63788.
Yun CW, Kim HJ, Lim JH, Lee SH. Heat shock proteins: agents of cancer development and therapeutic targets in anti-cancer therapy. Cells. 2019;9:60. https://doi.org/10.3390/cells9010060.
Chatterjee S, Burns TF. Targeting heat shock proteins in cancer: a promising therapeutic approach. Int J Mol Sci. 2017;18:1978. https://doi.org/10.3390/ijms18091978.
Sauvage F, Fattal E, Al-Sheer W, Denis S, Brotin E, Denoyelle C, Blanc-Fournier C, Toussaint B, Messaoudi S, Alami M, Barratt G, Vergnaud-Gauduchon J. Antitumor activity of nanoliposomes encapsulating the novobiocin analog 6BrCaQ in a triple-negative breast cancer model in mice. Cancer Lett. 2018;432:103–11. https://doi.org/10.1016/j.canlet.2018.06.001.
Park SH, Kim WJ, Li H, Seo W, Park SH, Kim H, Shin SC, Zuiderweg ERP, Kim EE, Sim T, Kim NK, Shin I. Anti-leukemia activity of a Hsp70 inhibitor and its hybrid molecules. Sci Rep. 2017;7:3537. https://doi.org/10.1038/s41598-017-03814-6.
Davenport J, Manjarrez JR, Peterson L, Krumm B, Blagg BSJ, Matts RL. Gambogic acid, a natural product inhibitor of Hsp90. J Nat Prod. 2011;74:1085–92. https://doi.org/10.1021/np200029q.
Hadden MK, Galam L, Gestwicki JE, Matts RL, Blagg BSJ. Derrubone, an inhibitor of the Hsp90 protein folding machinery. J Nat Prod. 2007;70:2014–8. https://doi.org/10.1021/np070190s.
Huo C, Lu X, Zheng Z, Li Y, Xu Y, Zheng H, Niu Y. Azaphilones with protein tyrosine phosphatase inhibitory activity isolated from the fungus aspergillus deflectus. Phytochemistry. 2020;170:112224. https://doi.org/10.1016/j.phytochem.2019.112224.
Yamane T, Saito Y, Teshima H, Hagino M, Kakihana A, Sato S, Shimada M, Kato Y, Kuga T, Yamagishi N, Nakayama Y. Hsp105a suppresses adriamycin-induced cell death via nuclear localization signal‐dependent nuclear accumulation. J Cell Biochem. 2019;120:17951–62. https://doi.org/10.1002/jcb.29062.
Matsumoto T, Kitagawa T, Imahori D, Yoshikawa H, Okayama M, Kobayashi M, Kojima N, Yamashita M, Watanabe T. Cell death-inducing activities via hsp inhibition of the sesquiterpenes isolated from Valeriana fauriei. J Nat Med. 2021;75:942–8. https://doi.org/10.1007/s11418-021-01543-9.
Matsumoto T, Imahori D, Ohnishi E, Okayama M, Kitagawa T, Ohta T, Yoshida T, Kojima N, Yamashita M, Watanabe T. Chemical structures and induction of cell death via heat shock protein inhibition of the prenylated phloroglucinol derivatives isolated from Hypericum erectum. Fitoterapia. 2022;156:105097. https://doi.org/10.1016/j.fitote.2021.105097.
Koyanagi Y, Hitora Y, Kawahara T, Peniphilones A. Azaphilone alkaloids from the Endophytic Fungus Penicillium maximae. Heterocycles. 2021;102:325–32. https://doi.org/10.3987/com-20-14373.
Yang MY, Wang YX, Chang QH, Li LF, Liu YF, Cao F. Cytochalasans and azaphilones: suitable chemotaxonomic markers for the Chaetomium species. Appl Microbiol Biotechnol. 2021;105:8139–55. https://doi.org/10.1007/s00253-021-11630-2.
de Oliveira F, Rocha ILD, Cláudia G, Alves Pinto D, Ventura SPM, Gonzaga Dos Santos A, José Crevelin E, et al. Identification of azaphilone derivatives of Monascus colorants from Talaromyces amestolkiae and their halochromic properties. Food Chem. 2022;372:131214. https://doi.org/10.1016/j.foodchem.2021.131214.
Yuan C, Guo Y, Wang K, Wang Z, Li L, Zhu H, Li G. A novel azaphilone muyophilone A from the endophytic fungus Muyocopron laterale 0307-2. Front Chem. 2021;9. https://doi.org/10.3389/fchem.2021.734822.
Zhao M, Ruan Q, Pan W, Tang Y, Zhao Z, Cui H. New polyketides and diterpenoid derivatives from the fungus penicillium sclerotiorum GZU-XW03-2 and their anti-inflammatory activity. Fitoterapia. 2020;143:104561. https://doi.org/10.1016/j.fitote.2020.104561.
Tang JL, Zhou ZY, Yang T, Yao C, Wu LW, Li GY. Azaphilone alkaloids with anti-inflammatory activity from Fungus Penicillium sclerotiorum cib-411. J Agric Food Chem. 2019;67:2175–82. https://doi.org/10.1021/acs.jafc.8b05628.
Jia Q, Du Y, Wang C, Wang Y, Zhu T, Zhu W. Azaphilones from the marine sponge-derived fungus Penicillium sclerotiorum OUCMDZ-3839. Mar Drugs. 2019;17:260. https://doi.org/10.3390/md17050260.
Becker K, Pfütze S, Kuhnert E, Cox RJ, Stadler M, Surup F, Hybridorubrins. A–D: azaphilone heterodimers from stromata of Hypoxylon fragiforme and insights into the biosynthetic machinery for azaphilone diversification. Chemistry. 2021;27:1438–50. https://doi.org/10.1002/chem.202003215.
Park MS, Chung D, Baek K, Lim YW. Three unrecorded species belonging to Penicillium Section Sclerotiora from marine environments in Korea. Mycobiology. 2019;47:165–72. https://doi.org/10.1080/12298093.2019.1601330.
Wang XC, Chen K, Zeng ZQ, Zhuang WY. Phylogeny and morphological analyses of Penicillium section Sclerotiora (Fungi) lead to the discovery of five new species. Sci Rep. 2017;7:8233. https://doi.org/10.1038/s41598-017-08697-1.
Irvine CA. Spartan’10, Wavefunction, USA, 2010.
Pescitelli G, Bruhn T. Good computational practice in the assignment of Absolute Configurations by TDDFT calculations of ECD Spectra. Chirality. 2016;28:466–74. https://doi.org/10.1002/chir.22600.
Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR. et al. Gaussian 09, Revision D.01, Gaussian Inc. Wallingford, CT 2009.
Bruhn T, Schaumlöffel A, Hemberger Y, Bringmann G, SpecDis. Quantifying the comparison of calculated and experimental electronic circular dichroism spectra. Chirality. 2013;25:243–9. https://doi.org/10.1002/chir.22138.
Ishihara K, Horiguchi K, Yamagishi N, Hatayama T. Identification of sodium salicylate as an hsp inducer using a simple screening system for stress response modulators in mammalian cells. Eur J Biochem. 2003;270:3461–8. https://doi.org/10.1046/j.1432-1033.2003.03740.x.
Μatsumoto T, Imahori D, Achiwa K, Saito Y, Ohta T, Yoshida T, Kojima N, Yamashita M, Nakayama Y, Watanabe T. Chemical structures and cytotoxic activities of the constituents isolated from Hibiscus tiliaceus. Fitoterapia. 2020;142:104524. https://doi.org/10.1016/j.fitote.2020.104524.
Wang HC, Ke TY, Ko YC, Lin JJ, Chang JS, Cheng YB. Anti-inflammatory azaphilones from the edible alga-derived fungus penicillium sclerotiorum. Mar Drugs. 2021;19:529. https://doi.org/10.3390/md19100529.
Arai N, Shiomi K, Tomoda H, Tabata N, Yang DJ, Masuma R, Kawakubo T, Ōmura S. Isochromophilones III–VI, inhibitors of acyl-CoA: cholesterol acyltransferase produced by Penicillium multicolor FO-3216. J Antibiot. 1995;48:696–702. https://doi.org/10.7164/antibiotics.48.696.
Matsuzaki K, Tanaka H, Ōmura S, Isochromophilones I, II. Novel inhibitors against gpl20-CD4 binding produced by Penicillium multicolor FO-2338. J Antibio. 1995;48:708–13. https://doi.org/10.7164/antibiotics.48.708.
Guo Q, Dong L, Zang X, Gu Z, He X, Yao L, Cao L, Qiu J, Guan X. A new azaphilone from the entomopathogenic fungus Hypocrella sp.Nat Prod Res.201529:2000–2006. https://doi.org/10.1080/14786419.2015.1023199.
Jongrungruangchok S, Kittakoop P, Yongsmith B, Bavovada R, Tanasupawat S, Lartpornmatulee N, Thebtaranonth Y. Azaphilone pigments from a yellow mutant of the fungus Monascus kaoliang. Phytochemistry. 2004;65:2569–75. https://doi.org/10.1016/j.phytochem.2004.08.032.
Chiang YM, Oakley CE, Ahuja M, Entwistle R, Schultz A, Chang SL, et al. An efficient system for heterologous expression of secondary metabolite genes in aspergillus nidulans. J Am Chem Soc. 2013;135:7720–31. https://doi.org/10.1021/ja401945a.
Matsuzaki K, Tahara H, Inokoshi J, Tanaka H, Masuma R, Omura S. New brominated and halogen-less derivatives and structure-activity relationship of azaphilones inhibiting gp120-CD4 binding. J Antibiot (Tokyo). 1998;51:1004–11. https://doi.org/10.7164/antibiotics.51.1004.
Pairet L, Wrigley SK, Chetland I, Reynolds EE, Hayes MA, Holloway J, Ainsworth AM, Katzer W, Cheng XM, Hupe DJ, Charlton P, Doherty AM. Azaphilones with endothelin receptor binding activity produced by Penicillium sclerotiorum: taxonomy, fermentation, isolation, structure elucidation and biological activity. J Antibiot (Tokyo). 1995;48:913–23. https://doi.org/10.7164/antibiotics.48.913.