Thermal conductivity and viscosity of self-assembled alcohol/polyalphaolefin nanoemulsion fluids

Jiajun Xu1, Bao Yang1, Boualem Hammouda2
1Department of Mechanical Engineering, University of Maryland, College Park, MD 20742, USA
2National Institute of Standards and Technology, Center for Neutron Research, Gaithersburg, MD 20899, USA

Tóm tắt

AbstractVery large thermal conductivity enhancement had been reported earlier in colloidal suspensions of solid nanoparticles (i.e., nanofluids) and more recently also in oil-in-water emulsions. In this study, nanoemulsions of alcohol and polyalphaolefin (PAO) are spontaneously generated by self-assembly, and their thermal conductivity and viscosity are investigated experimentally. Alcohol and PAO have similar thermal conductivity values, so that the abnormal effects, such as particle Brownian motion, on thermal transport could be deducted in these alcohol/PAO nanoemulsion fluids. Small angle neutron-scattering measurement shows that the alcohol droplets are spheres of 0.8-nm radius in these nanoemulsion fluids. Both thermal conductivity and dynamic viscosity of the fluids are found to increase with alcohol droplet loading, as expected from classical theories. However, the measured conductivity increase is very moderate, e.g., a 2.3% increase for 9 vol%, in these fluids. This suggests that no anomalous enhancement of thermal conductivity is observed in the alcohol/PAO nanoemulsion fluids tested in this study.

Từ khóa


Tài liệu tham khảo

Eastman JA, Choi SUS, Li S, Thompson LJ, Lee S: Enhanced thermal conductivity through development of nanofluids. In Nanocrystalline and Nanocomposite Materials II. Edited by: Komarnenl S, Parker JC. Wollenberger HJ: Pittsburgh: Materials Research Society; 1997:3.

Choi SUS, Zhang ZG, Yu W, Lockwood FE, Grulke EA: Anomalous thermal conductivity enhancement in nanotube suspensions. Appl Phys Lett 2001, 79: 2252–2254. 10.1063/1.1408272

Das SK, Putra N, Thiesen P, Roetzel W: Temperature dependence of thermal conductivity enhancement for nanofluids. Trans ASME J Heat Transfer 2003, 125: 567–574. 10.1115/1.1571080

Xue L, Keblinski P, Phillpot SR, Choi SU-S, Eastman JA: Effect of liquid layering at the liquid-solid interface on thermal transport. Int J Heat Mass Transfer 2004, 47: 4277–4284. 10.1016/j.ijheatmasstransfer.2004.05.016

Wen DS, Ding YL: Effective thermal conductivity of aqueous suspensions of carbon nanotubes (carbon nanotubes nanofluids). J Thermophys Heat Transfer 2004, 18: 481–485. 10.2514/1.9934

Hong T, Yang H, Choi CJ: Study of the enhanced thermal conductivity of Fe nanofluids. J Appl Phys 2005, 97: 064311/1–4.

Prasher R, Bhattacharya P, Phelan PE: Thermal conductivity of nanoscale colloidal solutions (nanofluids). Phys Rev Lett 2005, 94: 025901/1–4. 10.1103/PhysRevLett.94.025901

Yang Y, Grulke EA, Zhang ZG, Wu GF: Rheological behavior of carbon nanotube and graphite nanoparticle dispersions. J Nanosci Nanotechnol 2005, 5: 571–579. 10.1166/jnn.2005.079

Dong ZY, Huai XL, Liu DY: Experimental study on the explosive boiling in saturated liquid nitrogen. Prog Nat Sci 2005, 15: 61–65. 10.1080/10020070512330010

Ren Y, Xie H, Cai A: Effective thermal conductivity of nanofluids containing spherical nanoparticles. J Phys D Appl Phys 2005, 38: 3958–3961. 10.1088/0022-3727/38/21/019

Putnam SA, Cahill DG, Braun PV, Ge ZB, Shimmin RG: Thermal conductivity of nanoparticle suspensions. J Appl Phys 2006, 99: 084308. 10.1063/1.2189933

Yang B, Han ZH: Temperature-dependent thermal conductivity of nanorods-based nanofluids. Appl Phys Lett 2006, 89: 083111. Also selected for the September 4, 2006 issue of the Virtual Journal of Nanoscale Science & Technology [http://www.vjnano.org] Also selected for the September 4, 2006 issue of the Virtual Journal of Nanoscale Science & Technology 10.1063/1.2338424

Yang B, Han ZH: Thermal conductivity enhancement in water-in-FC72 nanoemulsion fluids. Appl Phys Lett 2006, 88: 261914. Also selected for the July 11, 2006 issue of the Virtual Journal of Nanoscale Science & Technology [http://www.vjnano.org] Also selected for the July 11, 2006 issue of the Virtual Journal of Nanoscale Science & Technology 10.1063/1.2218325

Ma HB, Wilson C, Yu Q, Park K, Choi US: An experimental investigation of heat transport capability in a nanofluid oscillating heat pipe. J Heat Transfer Trans ASME 2006, 128: 1213–1216. 10.1115/1.2352789

Eapen J, Li J, Yip S: Mechanism of thermal transport in dilute nanocolloids. Phys Rev Lett 2007, 98: 028302. 10.1103/PhysRevLett.98.028302

Hong HP, Wensel J, Peterson S, Roy W: Efficiently lowering the freezing point in heat transfer coolants using carbon nanotubes. J Thermophys Heat Transfer 2007, 21: 446–448. 10.2514/1.28387

Chiesa M, Garg J, Kang YT, Chen G: Thermal conductivity and viscosity of water-in-oil nanoemulsions. Colloids Surf A Physicochem Eng Aspects 2008, 326: 67–72. 10.1016/j.colsurfa.2008.05.028

Tzou DY: Thermal instability of nanofluids in natural convection. Int J Heat Mass Transfer 2008, 51: 2967–2979. 10.1016/j.ijheatmasstransfer.2007.09.014

Wen DS: Mechanisms of thermal nanofluids on enhanced critical heat flux (CHF). Int J Heat Mass Transfer 2008, 51: 4958–4965. 10.1016/j.ijheatmasstransfer.2008.01.034

Zhou SQ, Ni R: Measurement of the specific heat capacity of water-based Al2O3 nanofluid. Appl Phys Lett 2008, 92: 093123. 10.1063/1.2890431

Wang LQ, Wei XH: Nanofluids: synthesis, heat conduction, and extension. J Heat Transfer Trans ASME 2009, 131: 033102. 10.1115/1.3056597

Buongiorno J, et al.: A benchmark study on the thermal conductivity of nanofluids. J Appl Phys 2009, 106: 094312. 10.1063/1.3245330

Maxwell JC: A Treatise on Electricity and Magnetism. 2nd edition. Cambridge, UK: Oxford University Press; 1904.

He P, Qiao R: Self-consistent fluctuating hydrodynamics simulations of thermal transport in nanoparticle suspensions. J Appl Phys 2008, 103: 094305. 10.1063/1.2908217

Keblinski P, Phillpot SR, Choi SUS, Eastman JA: Mechanisms of heat flow in suspensions of nano-sized particles (nanofluids). Int J Heat Mass Transfer 2002, 45: 855–863. 10.1016/S0017-9310(01)00175-2

Bhattacharya P, Saha SK, Yadav A, Phelan PE, Prasher RS: Brownian dynamics simulation to determine the effective thermal conductivity of nanofluids. J Appl Phys 2004, 95: 6492–6494. 10.1063/1.1736319

Prasher R, Phelan PE, Bhattacharya P: Effect of aggregation kinetics on the thermal conductivity of nanoscale colloidal solutions (nanofluid). Nano Lett 2006, 6: 1529–1534. 10.1021/nl060992s

Krishnamurthy S, Lhattacharya P, Phelan PE, Prasher RS: Enhanced mass transport in nanofluids. Nano Lett 2006, 6: 419–423. 10.1021/nl0522532

Yang B, Han ZH: Thermal conductivity enhancement in water-in-FC72 nanoemulsion fluids. Appl Phys Lett 2006, 88: 261914. 10.1063/1.2218325

Han ZH, Yang B: Thermophysical characteristics of water-in-FC72 nanoemulsion fluids. Appl Phys Lett 2008, 92: 013118. 10.1063/1.2830334

Touloukian YS, Liley PE, Saxena SC: Thermal Conductivity for Nonmetallic Liquids & Gases. Thermalphysical Properties of Matters. Volume 3. Washington: IFI/Plenum; 1970.

Synfluid PAO Databook. Chevron Phillips Chemical Company LP; 2002.

Gradzielski M, Langevin D: Small-angle neutron scattering experiments on microemulsion droplets: relation to the bending elasticity of the amphiphilic film. J Mol Struct 1996, 383: 145. 10.1016/S0022-2860(96)09279-4

Marszalek J, Pojman JA, Page KA: Neutron scattering study of the structural change induced by photopolymerization of AOT/D2O/dodecyl acrylate inverse microemulsions. Langmuir 2008, 24: 41369. 10.1021/la8022634

Han ZH, Yang B, Kim SH, Zachariah MR: Application of hybrid sphere/carbon nanotube particles in nanofluids. Nanotechnology 2007, 18: 01/1–41057.

Dames C, Chen S, Harris CT, Huang JY, Ren ZF, Dresselhaus MS, Chen G: A hot-wire probe for thermal measurements of nanowires and nanotubes inside a transmission electron microscope. Rev Sci Instrum 2007, 78: 104903. 10.1063/1.2785848

Yang B, Liu JL, Wang KL, Chen G: Simultaneous measurements of Seebeck coefficient and thermal conductivity across superlattice. Appl Phys Lett 2002, 80: 1758–1760. 10.1063/1.1458693

Nan CW, Birringer R, Clarke DR, Gleiter H: Effective thermal conductivity of particulate composites with interfacial thermal resistance. J Appl Phys 1997, 81: 6692–6699. 10.1063/1.365209

Kumar P, Mittal KL, (Eds): Handbook of Microemulsion Science and Technology. New York: Marcel Dekker; 1999.