Thermal conductivity and viscosity of self-assembled alcohol/polyalphaolefin nanoemulsion fluids
Tóm tắt
Từ khóa
Tài liệu tham khảo
Eastman JA, Choi SUS, Li S, Thompson LJ, Lee S: Enhanced thermal conductivity through development of nanofluids. In Nanocrystalline and Nanocomposite Materials II. Edited by: Komarnenl S, Parker JC. Wollenberger HJ: Pittsburgh: Materials Research Society; 1997:3.
Choi SUS, Zhang ZG, Yu W, Lockwood FE, Grulke EA: Anomalous thermal conductivity enhancement in nanotube suspensions. Appl Phys Lett 2001, 79: 2252–2254. 10.1063/1.1408272
Das SK, Putra N, Thiesen P, Roetzel W: Temperature dependence of thermal conductivity enhancement for nanofluids. Trans ASME J Heat Transfer 2003, 125: 567–574. 10.1115/1.1571080
Xue L, Keblinski P, Phillpot SR, Choi SU-S, Eastman JA: Effect of liquid layering at the liquid-solid interface on thermal transport. Int J Heat Mass Transfer 2004, 47: 4277–4284. 10.1016/j.ijheatmasstransfer.2004.05.016
Wen DS, Ding YL: Effective thermal conductivity of aqueous suspensions of carbon nanotubes (carbon nanotubes nanofluids). J Thermophys Heat Transfer 2004, 18: 481–485. 10.2514/1.9934
Hong T, Yang H, Choi CJ: Study of the enhanced thermal conductivity of Fe nanofluids. J Appl Phys 2005, 97: 064311/1–4.
Prasher R, Bhattacharya P, Phelan PE: Thermal conductivity of nanoscale colloidal solutions (nanofluids). Phys Rev Lett 2005, 94: 025901/1–4. 10.1103/PhysRevLett.94.025901
Yang Y, Grulke EA, Zhang ZG, Wu GF: Rheological behavior of carbon nanotube and graphite nanoparticle dispersions. J Nanosci Nanotechnol 2005, 5: 571–579. 10.1166/jnn.2005.079
Dong ZY, Huai XL, Liu DY: Experimental study on the explosive boiling in saturated liquid nitrogen. Prog Nat Sci 2005, 15: 61–65. 10.1080/10020070512330010
Ren Y, Xie H, Cai A: Effective thermal conductivity of nanofluids containing spherical nanoparticles. J Phys D Appl Phys 2005, 38: 3958–3961. 10.1088/0022-3727/38/21/019
Putnam SA, Cahill DG, Braun PV, Ge ZB, Shimmin RG: Thermal conductivity of nanoparticle suspensions. J Appl Phys 2006, 99: 084308. 10.1063/1.2189933
Yang B, Han ZH: Temperature-dependent thermal conductivity of nanorods-based nanofluids. Appl Phys Lett 2006, 89: 083111. Also selected for the September 4, 2006 issue of the Virtual Journal of Nanoscale Science & Technology [http://www.vjnano.org] Also selected for the September 4, 2006 issue of the Virtual Journal of Nanoscale Science & Technology 10.1063/1.2338424
Yang B, Han ZH: Thermal conductivity enhancement in water-in-FC72 nanoemulsion fluids. Appl Phys Lett 2006, 88: 261914. Also selected for the July 11, 2006 issue of the Virtual Journal of Nanoscale Science & Technology [http://www.vjnano.org] Also selected for the July 11, 2006 issue of the Virtual Journal of Nanoscale Science & Technology 10.1063/1.2218325
Ma HB, Wilson C, Yu Q, Park K, Choi US: An experimental investigation of heat transport capability in a nanofluid oscillating heat pipe. J Heat Transfer Trans ASME 2006, 128: 1213–1216. 10.1115/1.2352789
Eapen J, Li J, Yip S: Mechanism of thermal transport in dilute nanocolloids. Phys Rev Lett 2007, 98: 028302. 10.1103/PhysRevLett.98.028302
Hong HP, Wensel J, Peterson S, Roy W: Efficiently lowering the freezing point in heat transfer coolants using carbon nanotubes. J Thermophys Heat Transfer 2007, 21: 446–448. 10.2514/1.28387
Chiesa M, Garg J, Kang YT, Chen G: Thermal conductivity and viscosity of water-in-oil nanoemulsions. Colloids Surf A Physicochem Eng Aspects 2008, 326: 67–72. 10.1016/j.colsurfa.2008.05.028
Tzou DY: Thermal instability of nanofluids in natural convection. Int J Heat Mass Transfer 2008, 51: 2967–2979. 10.1016/j.ijheatmasstransfer.2007.09.014
Wen DS: Mechanisms of thermal nanofluids on enhanced critical heat flux (CHF). Int J Heat Mass Transfer 2008, 51: 4958–4965. 10.1016/j.ijheatmasstransfer.2008.01.034
Zhou SQ, Ni R: Measurement of the specific heat capacity of water-based Al2O3 nanofluid. Appl Phys Lett 2008, 92: 093123. 10.1063/1.2890431
Wang LQ, Wei XH: Nanofluids: synthesis, heat conduction, and extension. J Heat Transfer Trans ASME 2009, 131: 033102. 10.1115/1.3056597
Buongiorno J, et al.: A benchmark study on the thermal conductivity of nanofluids. J Appl Phys 2009, 106: 094312. 10.1063/1.3245330
Maxwell JC: A Treatise on Electricity and Magnetism. 2nd edition. Cambridge, UK: Oxford University Press; 1904.
He P, Qiao R: Self-consistent fluctuating hydrodynamics simulations of thermal transport in nanoparticle suspensions. J Appl Phys 2008, 103: 094305. 10.1063/1.2908217
Keblinski P, Phillpot SR, Choi SUS, Eastman JA: Mechanisms of heat flow in suspensions of nano-sized particles (nanofluids). Int J Heat Mass Transfer 2002, 45: 855–863. 10.1016/S0017-9310(01)00175-2
Bhattacharya P, Saha SK, Yadav A, Phelan PE, Prasher RS: Brownian dynamics simulation to determine the effective thermal conductivity of nanofluids. J Appl Phys 2004, 95: 6492–6494. 10.1063/1.1736319
Prasher R, Phelan PE, Bhattacharya P: Effect of aggregation kinetics on the thermal conductivity of nanoscale colloidal solutions (nanofluid). Nano Lett 2006, 6: 1529–1534. 10.1021/nl060992s
Krishnamurthy S, Lhattacharya P, Phelan PE, Prasher RS: Enhanced mass transport in nanofluids. Nano Lett 2006, 6: 419–423. 10.1021/nl0522532
Yang B, Han ZH: Thermal conductivity enhancement in water-in-FC72 nanoemulsion fluids. Appl Phys Lett 2006, 88: 261914. 10.1063/1.2218325
Han ZH, Yang B: Thermophysical characteristics of water-in-FC72 nanoemulsion fluids. Appl Phys Lett 2008, 92: 013118. 10.1063/1.2830334
Touloukian YS, Liley PE, Saxena SC: Thermal Conductivity for Nonmetallic Liquids & Gases. Thermalphysical Properties of Matters. Volume 3. Washington: IFI/Plenum; 1970.
Synfluid PAO Databook. Chevron Phillips Chemical Company LP; 2002.
Gradzielski M, Langevin D: Small-angle neutron scattering experiments on microemulsion droplets: relation to the bending elasticity of the amphiphilic film. J Mol Struct 1996, 383: 145. 10.1016/S0022-2860(96)09279-4
Marszalek J, Pojman JA, Page KA: Neutron scattering study of the structural change induced by photopolymerization of AOT/D2O/dodecyl acrylate inverse microemulsions. Langmuir 2008, 24: 41369. 10.1021/la8022634
Han ZH, Yang B, Kim SH, Zachariah MR: Application of hybrid sphere/carbon nanotube particles in nanofluids. Nanotechnology 2007, 18: 01/1–41057.
Dames C, Chen S, Harris CT, Huang JY, Ren ZF, Dresselhaus MS, Chen G: A hot-wire probe for thermal measurements of nanowires and nanotubes inside a transmission electron microscope. Rev Sci Instrum 2007, 78: 104903. 10.1063/1.2785848
Yang B, Liu JL, Wang KL, Chen G: Simultaneous measurements of Seebeck coefficient and thermal conductivity across superlattice. Appl Phys Lett 2002, 80: 1758–1760. 10.1063/1.1458693
Nan CW, Birringer R, Clarke DR, Gleiter H: Effective thermal conductivity of particulate composites with interfacial thermal resistance. J Appl Phys 1997, 81: 6692–6699. 10.1063/1.365209
Kumar P, Mittal KL, (Eds): Handbook of Microemulsion Science and Technology. New York: Marcel Dekker; 1999.
