Topological crackle of heavy-tailed moving average processes

Stochastic Processes and their Applications - Tập 129 - Trang 4965-4997 - 2019
Takashi Owada1
1Department of Statistics, Purdue University, IN, 47907, USA

Tài liệu tham khảo

R.J. Adler, O. Bobrowski, M.S. Borman, E. Subag, S. Weinberger, Persistent homology for random fields and complexes. Borrowing Strength: Theory Powering Applications, A festschrift for Lawrence D. Brown. IMS Collections, 6, 2010. Adler, 2014, Crackle: The homology of noise, Discrete Comput. Geom., 52, 680, 10.1007/s00454-014-9621-6 Balkema, 2007 Balkema, 2010, Meta densities and the shape of their sample clouds, J. Multivariate Anal., 101, 1738, 10.1016/j.jmva.2010.02.010 Balkema, 2013, The shape of asymptotic dependence, Springer Proc. Math. Statist. Spec. Volume Prokhorov Contemp. Probab. Theory, 33, 43, 10.1007/978-3-642-33549-5_3 Basrak, 2002, Regular variation of GARCH processes, Stochastic Process. Appl., 99, 95, 10.1016/S0304-4149(01)00156-9 Billingsley, 1999 Bingham, 1987 Björner, 1995, Topological methods Bobrowski, 2018, Topology of random geometric complexes: a survey, J. Appl. Comput. Topol., 1, 331, 10.1007/s41468-017-0010-0 Bobrowski, 2015, The topology of probability distributions on manifolds, Probab. Theory Related Fields, 161, 651, 10.1007/s00440-014-0556-x Brockwell, 1991 Coles, 2001 Dabrowski, 2002, Poisson limits for U-statistics, Stochastic Process. Appl., 99, 137, 10.1016/S0304-4149(01)00153-3 Davis, 1998, The sample autocorrelations of heavy-tailed processes with applications to ARCH, Ann. Statist., 26, 2049, 10.1214/aos/1024691368 Davis, 1985, Limit theory for moving averages of random variables with regularly varying tail probabilities, Ann. Probab., 13, 179, 10.1214/aop/1176993074 Decreusefond, 2016, Functional Poisson approximation in Kantorovich-Rubinstein distance with applications to U-statistics and stochastic geometry, Ann. Probab., 44, 2147, 10.1214/15-AOP1020 Embrechts, 1997 Galambos, 1987 Ghrist, 2014 de Haan, 2006 Hatcher, 2002 Hult, 2008, Tail probabilities for infinite series of regularly varying random vectors, Bernoulli, 14, 838, 10.3150/08-BEJ125 Kahle, 2011, Random geometric complexes, Discrete Comput. Geom., 45, 553, 10.1007/s00454-010-9319-3 Kahle, 2013, Limit theorems for Betti numbers of random simplicial complexes, Homology, Homotopy Appl., 15, 343, 10.4310/HHA.2013.v15.n1.a17 Kulik, 2006, Limit theorems for moving averages with random coefficients and heavy-tailed noise, J. Appl. Probab., 43, 245, 10.1239/jap/1143936257 Leadbetter, 1983 Meerschaert, 2000, Moving averages of random vectors with regularly varying tails, J. Time Series Anal., 21, 297, 10.1111/1467-9892.00187 Munkres, 1996 Niyogi, 2008, Finding the homology of submanifolds with high confidence from random samples, Discrete Comput. Geom., 39, 419, 10.1007/s00454-008-9053-2 Niyogi, 2011, A topological view of unsupervised learning from noisy data, SIAM J. Comput., 40, 646, 10.1137/090762932 Owada, 2018, Limit theorems for Betti numbers of extreme sample clouds with application to persistence barcodes, Ann. Appl. Probab., 28, 2814, 10.1214/17-AAP1375 Owada, 2017, Limit theorems for point processes under geometric constraints (and topological crackle), Ann. Probab., 45, 2004, 10.1214/16-AOP1106 Penrose, 2003 Resnick, 1987 Resnick, 2007 Schulte, 2012, The scaling limit of Poisson-driven order statistics with applications in geometric probability, Stochastic Process. Appl., 122, 4096, 10.1016/j.spa.2012.08.011 de Silva, 2007, Coverage in sensor networks via persistent homology, Algebr. Geom. Topol., 7, 339, 10.2140/agt.2007.7.339 Vick, 1994 Yogeshwaran, 2015, On the topology of random complexes built over stationary point processes, Ann. Appl. Probab., 25, 3338, 10.1214/14-AAP1075 Yogeshwaran, 2017, Random geometric complexes in the thermodynamic regime, Probab. Theory Related Fields, 167, 107, 10.1007/s00440-015-0678-9