Topological crackle of heavy-tailed moving average processes
Tài liệu tham khảo
R.J. Adler, O. Bobrowski, M.S. Borman, E. Subag, S. Weinberger, Persistent homology for random fields and complexes. Borrowing Strength: Theory Powering Applications, A festschrift for Lawrence D. Brown. IMS Collections, 6, 2010.
Adler, 2014, Crackle: The homology of noise, Discrete Comput. Geom., 52, 680, 10.1007/s00454-014-9621-6
Balkema, 2007
Balkema, 2010, Meta densities and the shape of their sample clouds, J. Multivariate Anal., 101, 1738, 10.1016/j.jmva.2010.02.010
Balkema, 2013, The shape of asymptotic dependence, Springer Proc. Math. Statist. Spec. Volume Prokhorov Contemp. Probab. Theory, 33, 43, 10.1007/978-3-642-33549-5_3
Basrak, 2002, Regular variation of GARCH processes, Stochastic Process. Appl., 99, 95, 10.1016/S0304-4149(01)00156-9
Billingsley, 1999
Bingham, 1987
Björner, 1995, Topological methods
Bobrowski, 2018, Topology of random geometric complexes: a survey, J. Appl. Comput. Topol., 1, 331, 10.1007/s41468-017-0010-0
Bobrowski, 2015, The topology of probability distributions on manifolds, Probab. Theory Related Fields, 161, 651, 10.1007/s00440-014-0556-x
Brockwell, 1991
Coles, 2001
Dabrowski, 2002, Poisson limits for U-statistics, Stochastic Process. Appl., 99, 137, 10.1016/S0304-4149(01)00153-3
Davis, 1998, The sample autocorrelations of heavy-tailed processes with applications to ARCH, Ann. Statist., 26, 2049, 10.1214/aos/1024691368
Davis, 1985, Limit theory for moving averages of random variables with regularly varying tail probabilities, Ann. Probab., 13, 179, 10.1214/aop/1176993074
Decreusefond, 2016, Functional Poisson approximation in Kantorovich-Rubinstein distance with applications to U-statistics and stochastic geometry, Ann. Probab., 44, 2147, 10.1214/15-AOP1020
Embrechts, 1997
Galambos, 1987
Ghrist, 2014
de Haan, 2006
Hatcher, 2002
Hult, 2008, Tail probabilities for infinite series of regularly varying random vectors, Bernoulli, 14, 838, 10.3150/08-BEJ125
Kahle, 2011, Random geometric complexes, Discrete Comput. Geom., 45, 553, 10.1007/s00454-010-9319-3
Kahle, 2013, Limit theorems for Betti numbers of random simplicial complexes, Homology, Homotopy Appl., 15, 343, 10.4310/HHA.2013.v15.n1.a17
Kulik, 2006, Limit theorems for moving averages with random coefficients and heavy-tailed noise, J. Appl. Probab., 43, 245, 10.1239/jap/1143936257
Leadbetter, 1983
Meerschaert, 2000, Moving averages of random vectors with regularly varying tails, J. Time Series Anal., 21, 297, 10.1111/1467-9892.00187
Munkres, 1996
Niyogi, 2008, Finding the homology of submanifolds with high confidence from random samples, Discrete Comput. Geom., 39, 419, 10.1007/s00454-008-9053-2
Niyogi, 2011, A topological view of unsupervised learning from noisy data, SIAM J. Comput., 40, 646, 10.1137/090762932
Owada, 2018, Limit theorems for Betti numbers of extreme sample clouds with application to persistence barcodes, Ann. Appl. Probab., 28, 2814, 10.1214/17-AAP1375
Owada, 2017, Limit theorems for point processes under geometric constraints (and topological crackle), Ann. Probab., 45, 2004, 10.1214/16-AOP1106
Penrose, 2003
Resnick, 1987
Resnick, 2007
Schulte, 2012, The scaling limit of Poisson-driven order statistics with applications in geometric probability, Stochastic Process. Appl., 122, 4096, 10.1016/j.spa.2012.08.011
de Silva, 2007, Coverage in sensor networks via persistent homology, Algebr. Geom. Topol., 7, 339, 10.2140/agt.2007.7.339
Vick, 1994
Yogeshwaran, 2015, On the topology of random complexes built over stationary point processes, Ann. Appl. Probab., 25, 3338, 10.1214/14-AAP1075
Yogeshwaran, 2017, Random geometric complexes in the thermodynamic regime, Probab. Theory Related Fields, 167, 107, 10.1007/s00440-015-0678-9