Generalized proximal-type methods for weak vector variational inequality problems in Banach spaces
Tóm tắt
In this paper, we propose a class of generalized proximal-type method by the virtue of Bregman functions to solve weak vector variational inequality problems in Banach spaces. We carry out a convergence analysis on the method and prove the weak convergence of the generated sequence to a solution of the weak vector variational inequality problems under some mild conditions. Our results extend some known results to more general cases.
Tài liệu tham khảo
Martinet, B: Regularisation d’inéquations variationelles par approximations successives. Rev. Fr. Inform. Rech. Oper. 2, 154-159 (1970)
Rockafellar, RT: Monotone operators and the proximal point algorithm. SIAM J. Control Optim. 14(5), 877-898 (1976)
Auslender, A, Haddou, M: An interior proximal point method for convex linearly constrained problems and its extension to variational inequalities. Math. Program. 71, 77-100 (1995)
Güler, O: On the convergence of the proximal point algorithm for convex minimization. SIAM J. Control Optim. 29, 403-419 (1991)
Kamimura, S, Takahashi, W: Strong convergence of a proximal-type algorithm in a Banach space. SIAM J. Optim. 13(3), 938-945 (2003)
Pathak, HK, Cho, YJ: Strong convergence of a proximal-type algorithm for an occasionally pseudomonotone operator in Banach spaces. Fixed Point Theory Appl. 2012, 190 (2012)
Pennanen, T: Local convergence of the proximal point algorithm and multiplier methods without monotonicity. Math. Oper. Res. 27(1), 170-191 (2002)
Solodov, MV, Svaiter, BF: Forcing strong convergence of proximal point iterations in a Hilbert space. Math. Program., Ser. A 87, 189-202 (2000)
Bonnel, H, Iusem, AN, Svaiter, BF: Proximal methods in vector optimization. SIAM J. Optim. 15(4), 953-970 (2005)
Ceng, LC, Yao, JC: Approximate proximal methods in vector optimization. Eur. J. Oper. Res. 181(1), 1-19 (2007)
Chen, Z, Huang, XX, Yang, XQ: Generalized proximal point algorithms for multiobjective optimization problems. Appl. Anal. 90, 935-949 (2011)
Chen, Z, Zhao, KQ: A proximal-type method for convex vector optimization problem in Banach spaces. Numer. Funct. Anal. Optim. 30, 70-81 (2009)
Chen, Z, Huang, HQ, Zhao, KQ: Approximate generalized proximal-type method for convex vector optimization problem in Banach spaces. Comput. Math. Appl. 57, 1196-1203 (2009)
Chen, Z: Asymptotic analysis in convex composite multiobjective optimization problems. J. Glob. Optim. 55, 507-520 (2013)
Bregman, LM: The relaxation method of finding the common point of convex sets and its application to the solution of problems in convex programming. USSR Comput. Math. Math. Phys. 7, 200-217 (1967). doi:10.1016/0041-5553(67)90040-7
Censor, Y, Lent, A: An iterative row-action method for interval convex programming. J. Optim. Theory Appl. 34, 321-353 (1981)
Bauschke, HH, Borwein, JM: Legendre function and the method of random Bregman functions. J. Convex Anal. 4, 27-67 (1997)
Censor, Y, Zenios, SA: The proximal minimization algorithm with D-function. J. Optim. Theory Appl. 73, 451-464 (1992)
Chen, G, Teboulle, M: Convergence analysis of a proximal-like minimization algorithm using Bregman function. SIAM J. Optim. 3(3), 538-543 (1993)
Kiwiel, KC: Proximal minimization methods with generalized Bregman functions. SIAM J. Control Optim. 35, 326-349 (1997)
Burachik, RS, Iusem, AN: A generalized proximal point algorithm for the variational inequality problem in a Hilbert space. SIAM J. Optim. 8(1), 197-216 (1998)
Burachik, RS, Scheimberg, S: A proximal point algorithm for the variational inequality problem in Banach space. SIAM J. Control Optim. 39(5), 1633-1649 (2001)
Giannessi, F: Theorems of alternative, quadratic programs and complementarity problems. In: Cottle, RW, Giannessi, F, Lions, JL (eds.) Variational Inequality and Complementarity Problems. Wiley, New York (1980)
Chen, GY, Yang, XQ: The vector complementary problem and its equivalences with vector minimal element in ordered spaces. J. Math. Anal. Appl. 153, 136-158 (1990)
Chen, GY: Existence of solutions for a vector variational inequality: an extension of the Hartman-Stampacchia theorem. J. Optim. Theory Appl. 74, 445-456 (1992)
Chen, GY, Huang, XX, Yang, XQ: Vector Optimization, Set-Valued and Variational Analysis. Lecture Notes in Economics and Mathematical Systems, vol. 541. Springer, Berlin (2005)
Chen, Z: Asymptotic analysis for proximal-type methods in vector variational inequality problems. Oper. Res. Lett. 43, 226-230 (2015)
Allgower, EL, Böhmer, K, Potra, FA, Rheinboldt, WC: A mesh independence principle for operator equations and their discretizations. SIAM J. Numer. Anal. 23, 160-169 (1986)
Heinkenschloss, M: Mesh independence for nonlinear least squares problems with norm constraints. SIAM J. Optim. 3, 81-117 (1993)
Laumen, M: Newton’s mesh independence principle for a class of optimal shape design problems. SIAM J. Control Optim. 37, 1142-1168 (1999)
Huang, XX, Fang, YP, Yang, XQ: Characterizing the nonemptiness and compactness of the solution set of a vector variational inequality by scalarization. J. Optim. Theory Appl. 162(2), 548-558 (2014)
Facchinei, F, Pang, JS: Finite-Dimensional Variational Inequalities and Complementarity Problems, Volume I, II. Springer Series in Operations Research. Springer, Berlin (2004)
Hu, R, Fang, YP: On the nonemptiness and compactness of the solution sets for vector variational inequalities. Optimization 59, 1107-1116 (2010)
Rockafellar, RT: Convex Analysis. Princeton University Press, Princeton (1970)
Rockafellar, RT: On the maximality of sums of nonlinear monotone operators. Trans. Am. Math. Soc. 149, 75-88 (1970)
Auslender, A: Optimisation. Methodes Numeriques. Masson, Paris (1976)
Brezis, H, Haraux, A: Image d’une somme d’operateurs monotones et applications. Isr. J. Math. 23, 165-186 (1976)
Pascali, D, Sburlan, S: Nonlinear Mappings of Monotone Type. Nijhoff, Dordrecht (1978)
Butnariu, D, Iusem, AN: Local moduli of convexity and their applications to finding almost common points of measurable families of operators. In: Censor, Y, Reich, S (eds.) Recent Developments in Optimization Theory and Nonlinear Analysis. Contemp. Math., vol. 204, pp. 61-91. AMS, Providence (1997)
Attouch, H, Buttazzo, G, Michaille, G: Variational Analysis in Sobolev and BV Spaces: Applications to PDEs and Optimization. MPS/SIAM, Philadelphia (2006)
Fan, JH, Jing, Y, Zhong, RY: Nonemptiness and boundedness of solution sets for vector variational inequalities via topological method. J. Glob. Optim. 63, 181-193 (2015). doi:10.1007/s10898-015-0279-2