Effect of the Boundary Conditions on the High-Frequency Electrical Conductivity of a Thin Conducting Layer in a Longitudinal Magnetic Field

Semiconductors - Tập 54 - Trang 1039-1046 - 2020
I. V. Kuznetsova1, O. V. Savenko1, P. A. Kuznetsov1
1Yaroslavl State University, Yaroslavl, Russia

Tóm tắt

The problem of the high-frequency conductivity of a thin conducting layer in a longitudinal magnetic field is solved using a kinetic approach taking into account the mirror-diffusion boundary conditions. The specularity coefficients of the layer surfaces are assumed to be different. An analytical expression is derived for the dimensionless integrated conductivity as a function of the dimensionless parameters, including the layer thickness, electric-field frequency, magnetic induction, chemical potential, and surface specularity coefficients. The limiting cases of a degenerate and nondegenerate electron gas are considered. A comparative analysis of theoretical calculations with the experimental data is made. A method for determining the specularity coefficients and the carrier mean free path using the longitudinal magnetoresistance of a thin metallic film is demonstrated.

Tài liệu tham khảo

A. L. Chizh, K. B. Mikitchuk, K. S. Zhuravlev, D. V. Dmitriev, A. I. Toropov, N. A. Valisheva, M. S. Aksenov, A. M. Gilinsky, and I. B. Chistokhin, Tech. Phys. Lett. 45, 739 (2019). V. S. Varavin, V. V. Vasil’ev, A. A. Guzev, S. A. Dvoretskii, A. P. Kovchavtsev, D. V. Marin, I. V. Sabinina, Yu. G. Sidorov, G. Yu. Sidorov, A. V. Tsarenko, and M. V. Yakushev, Semiconductors 50, 1626 (2016). L. Wang, M. Yin, A. Khan, S. Muhtadi, F. Asif, E. S. Choi, and T. Datta, Phys. Rev. Appl. 9, 024006 (2018). M. A. Abeed, J. L. Drobitch, and S. Bandyopadhyay, Phys. Rev. Appl. 11, 054069 (2019). A. Kowsar, S. F. U. Farhad, and S. N. Sakib, Int. J. Renewable Energy Res. 8, 2218 (2018). B. Godefroid and G. Kozyreff, Phys. Rev. Appl. 8, 034024 (2017). S. Bhattacharya, I. Baydoun, M. Lin, and S. John, Phys. Rev. Appl. 11, 014005 (2019). V. S. Kalinovskii, E. V. Kontrosh, A. V. Andreeva, V. M. Andreev, V. V. Malyutina-Bronskaya, V. B. Zalesskii, A. M. Lemeshevskaya, V. I. Kuzoro, V. I. Khalimanovich, and M. K. Zaitseva, Tech. Phys. Lett. 45, 850 (2019). A. B. Nikolskaia, M. F. Vildanova, S. S. Kozlov, and O. I. Shevaleevskiy, Semiconductors 52, 88 (2018). A. I. Anselm, Introduction to Semiconductor Theory (Prentice-Hall, Englewood Cliffs, 1981). I. M. Lifshits, M. Ya. Azbel’, and M. I. Kaganov, Electron Theory of Metals (Nauka, Moscow, 1971; Consultants Bureau, Adam Hilger, New York, 1973). K. Fuchs, Proc. Cambridge Phil. Soc. 34, 100 (1938). E. H. Sondheimer, Adv. Phys. 50, 499 (2001). Y. S. Way and Y. H. Kao, Phys. Rev. B 5, 2039 (1972). L. Moraga, C. Arenas, R. Henriquez, S. Bravo, and B. Solis, Phys. B: Condens. Matter 499, 17 (2016). R. Henriquez, S. Oyarzun, M. Flores, M. A. Suarez, L. Moraga, G. Kremer, C. A. Gonzalez-Fuentes, M. Robles, and R. C. Munoz, J. Appl. Phys. 108, 123704 (2010). R. C. Munoz, M. A. Suárez, and S. Oyarzún, Phys. Rev. B 81, 165408 (2010). S. Oyarzún, R. Henríquez, M. A. Suárez, L. Moraga, G. Kremer, and R. C. Munoz, Appl. Surf. Sci. 289, 167 (2014). A. I. Utkin, E. V. Zavitaev, and A. A. Yushkanov, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 10, 962 (2016). A. I. Utkin and A. A. Yushkanov, Tech. Phys. 61, 1457 (2016). I. A. Kuznetsova, O. V. Savenko, and A. A. Yushkanov, Tech. Phys. 62, 1766 (2017). I. A. Kuznetsova, D. N. Romanov, O. V. Savenko, and A. A. Yushkanov, Russ. Microelectron. 46, 252 (2017). I. A. Kuznetsova, D. N. Romanov, and A. A. Yushkanov, Russ. Microelectron. 47, 201 (2018). E. V. Zavitaev, K. E. Kharitonov, and A. A. Yushkanov, Tech. Phys. 64, 593 (2019). I. A. Kuznetsova, D. N. Romanov, and A. A. Yushkanov, Phys. Scr. 94, 115805 (2019). E. V. Zavitaev and A. A. Yushkanov, J. Exp. Theor. Phys. 103, 821 (2006). L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 8: Electrodynamics of Continuous Media (Fizmatlit, Moscow, 2005; Pergamon, New York, 1984).