Multiple weighted estimates for commutators of multilinear maximal function

Springer Science and Business Media LLC - Tập 31 - Trang 973-994 - 2015
Pu Zhang1
1Department of Mathematics, Mudanjiang Normal University, Mudanjiang, P. R. China

Tóm tắt

Let M be the multilinear maximal function and $\vec b$ = (b 1,..., b m ) be a collection of locally integrable functions. Denote by M $\vec b$ and $\vec b$ , M] the maximal commutator and the commutator of M with $\vec b$ , respectively. In this paper, the multiple weighted strong and weak type estimates for operators M $\vec b$ and [ $\vec b$ , M] are studied. Some characterizations of the class of functions b j are given, for which these operators satisfy some strong or weak type estimates.

Tài liệu tham khảo

Agcayazi, M., Gogatishvili, A., Koca, K., et al.: A note on maximal commutators and commutators of maximal functions. J. Math. Soc. Japan, 67(2), 581–593 (2015) Bastero, J., Milman, M., Ruiz, F. J.: Commutators for the maximal and sharp functions. Proc. Amer. Math. Soc., 128(11), 3329–3334 (2000) Coifman, R. R., Rochberg, R., Weiss, G.: Factorization theorems for Hardy spaces in several variables. Ann. of Math., 103, 611–635 (1976) Fefferman, C., Stein, E. M.: Hp spaces of several variables. Acta Math., 129, 137–193 (1972) García-Cuerva, J., Harboure, E., Segovia, C., et al.: Weighted norm inequalities for commutators of strongly singular integrals. Indiana Univ. Math. J., 40, 1397–1420 (1991) García-Cuerva, J., Rubio de Francia, J.-L.: Weighted Norm Inequalities and Related Topics, North-Holland Math. Stud. 116, North-Holland, Amsterdam, 1985 Grafakos, L.: Classical Fourier Analysis, Second Edition, Graduate Texts in Math., No. 249, Springer, New York, 2008 Hanks, R.: Interpolation by the real method between BMO, L α(0 < α < ∞) and H α(0 < α < ∞). Indiana Univ. Math. J., 26(4), 679–689 (1977) Hu, G., Lin, H., Yang, D.: Commutators of the HardyLittlewood maximal operator with BMO symbols on spaces of homogeneous type. Abstr. Appl. Anal., Vol. 2008, Article ID 237937, 21pp (2008) Janson, S.: Mean oscillation and commutators of singular integral operators. Ark. Mat., 16, 263–270 (1978) John, F., Nirenberg, L.: On functions of bounded mean oscillation. Comm. Pure Appl. Math., 14, 415–426 (1961) Lerner, A. K., Ombrosi, S., Pérez, C., et al.: New maximal functions and multiple weights for the multilinear Calderón-Zygmund theory. Adv. Math., 220, 1222–1264 (2009) Milman, M., Schonbek, T.: Second order estimates in interpolation theory and applications. Proc. Amer. Math. Soc., 110(4), 961–969 (1990) Pérez, C.: Endpoint estimates for commutators of singular integral operators. J. Funct. Anal., 128, 163–185 (1995) Pérez, C., Pradolini, G., Torres, R. H., et al.: End-point estimates for iterated commutators of multilinear singular integrals. Bull. London Math. Soc., 46, 26–42 (2014) Pérez, C., Torres, R. H.: Sharp maximal function estimates for multilinear singular integrals. Contemp. Math., 320, 323–331 (2003) Pérez, C., Trujillo-González, R.: Sharp weighted estimates for multilinear commutators. J. London Math. Soc., 65, 672–692 (2002) Segovia, C., Torrea, J. L.: Vector-valued commutators and applications. Indiana Univ. Math. J., 38(4), 959–971 (1989) Segovia, C., Torrea, J. L.: Higher order commutators for vector-valued Calderón-Zygmund operators. Trans. Amer. Math. Soc., 336(2), 537–556 (1993) Stein, E. M.: Harmonic Analysis: Real Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton Univ. Press, Princeton, 1993 Xue, Q.: Weighted estimates for the iterated commutators of multilinear maximal and fractional type operators. Studia Math., 217, 97–122 (2013) Zhang, P.: Weighted estimates for maximal multilinear commutators. Math. Nachr., 279(4), 445–462 (2006)