Multiple weighted estimates for commutators of multilinear maximal function
Tóm tắt
Let M be the multilinear maximal function and
$\vec b$
= (b
1,..., b
m
) be a collection of locally integrable functions. Denote by M
$\vec b$
and
$\vec b$
, M] the maximal commutator and the commutator of M with
$\vec b$
, respectively. In this paper, the multiple weighted strong and weak type estimates for operators M
$\vec b$
and [
$\vec b$
, M] are studied. Some characterizations of the class of functions b
j
are given, for which these operators satisfy some strong or weak type estimates.
Tài liệu tham khảo
Agcayazi, M., Gogatishvili, A., Koca, K., et al.: A note on maximal commutators and commutators of maximal functions. J. Math. Soc. Japan, 67(2), 581–593 (2015)
Bastero, J., Milman, M., Ruiz, F. J.: Commutators for the maximal and sharp functions. Proc. Amer. Math. Soc., 128(11), 3329–3334 (2000)
Coifman, R. R., Rochberg, R., Weiss, G.: Factorization theorems for Hardy spaces in several variables. Ann. of Math., 103, 611–635 (1976)
Fefferman, C., Stein, E. M.: Hp spaces of several variables. Acta Math., 129, 137–193 (1972)
García-Cuerva, J., Harboure, E., Segovia, C., et al.: Weighted norm inequalities for commutators of strongly singular integrals. Indiana Univ. Math. J., 40, 1397–1420 (1991)
García-Cuerva, J., Rubio de Francia, J.-L.: Weighted Norm Inequalities and Related Topics, North-Holland Math. Stud. 116, North-Holland, Amsterdam, 1985
Grafakos, L.: Classical Fourier Analysis, Second Edition, Graduate Texts in Math., No. 249, Springer, New York, 2008
Hanks, R.: Interpolation by the real method between BMO, L α(0 < α < ∞) and H α(0 < α < ∞). Indiana Univ. Math. J., 26(4), 679–689 (1977)
Hu, G., Lin, H., Yang, D.: Commutators of the HardyLittlewood maximal operator with BMO symbols on spaces of homogeneous type. Abstr. Appl. Anal., Vol. 2008, Article ID 237937, 21pp (2008)
Janson, S.: Mean oscillation and commutators of singular integral operators. Ark. Mat., 16, 263–270 (1978)
John, F., Nirenberg, L.: On functions of bounded mean oscillation. Comm. Pure Appl. Math., 14, 415–426 (1961)
Lerner, A. K., Ombrosi, S., Pérez, C., et al.: New maximal functions and multiple weights for the multilinear Calderón-Zygmund theory. Adv. Math., 220, 1222–1264 (2009)
Milman, M., Schonbek, T.: Second order estimates in interpolation theory and applications. Proc. Amer. Math. Soc., 110(4), 961–969 (1990)
Pérez, C.: Endpoint estimates for commutators of singular integral operators. J. Funct. Anal., 128, 163–185 (1995)
Pérez, C., Pradolini, G., Torres, R. H., et al.: End-point estimates for iterated commutators of multilinear singular integrals. Bull. London Math. Soc., 46, 26–42 (2014)
Pérez, C., Torres, R. H.: Sharp maximal function estimates for multilinear singular integrals. Contemp. Math., 320, 323–331 (2003)
Pérez, C., Trujillo-González, R.: Sharp weighted estimates for multilinear commutators. J. London Math. Soc., 65, 672–692 (2002)
Segovia, C., Torrea, J. L.: Vector-valued commutators and applications. Indiana Univ. Math. J., 38(4), 959–971 (1989)
Segovia, C., Torrea, J. L.: Higher order commutators for vector-valued Calderón-Zygmund operators. Trans. Amer. Math. Soc., 336(2), 537–556 (1993)
Stein, E. M.: Harmonic Analysis: Real Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton Univ. Press, Princeton, 1993
Xue, Q.: Weighted estimates for the iterated commutators of multilinear maximal and fractional type operators. Studia Math., 217, 97–122 (2013)
Zhang, P.: Weighted estimates for maximal multilinear commutators. Math. Nachr., 279(4), 445–462 (2006)