Comparing brain activation associated with isolated upper and lower limb movement across corresponding joints

Human Brain Mapping - Tập 17 Số 2 - Trang 131-140 - 2002
Andreas R. Luft1, Gerald V. Smith2, Larry W. Forrester2, Jill Whitall2, Richard F. Macko3,4, Till‐Karsten Hauser5, Andrew P. Goldberg4,6, Daniel F. Hanley7
1Department of Neurology, University of Tübingen, Hoppe-Seyler Strasse 3, 72076 Tübingen, Germany
2Department of Physical Therapy, University of Maryland, Baltimore, Maryland
3Department of Neurology, University of Maryland, Baltimore, Maryland
4Department of Veterans Affairs and the Baltimore VA Geriatric Research Education and Clinical Center (GRECC), Baltimore, Maryland
5Department of Neurology, University of Tübingen, Tübingen, Germany
6Division of Gerontology, Department of Medicine, University of Maryland, Baltimore, Maryland
7Department of Neurology, Johns Hopkins University, Baltimore, Maryland

Tóm tắt

AbstractIt was shown recently that functional activation across brain motor areas during locomotion and foot movements are similar but differ substantially from activation related to upper extremity movement (Miyai [2001]: Neuroimage 14:1186–1192). The activation pattern may be a function of the behavioral context of the movement rather than of its mechanical properties. We compare motor system activation patterns associated with isolated single‐joint movement of corresponding joints in arm and leg carried out in equal frequency and range. Eleven healthy volunteers underwent BOLD‐weighted fMRI while performing repetitive elbow or knee extension/flexion. To relate elbow and knee activation to the well‐described patterns of finger movement, serial finger‐to‐thumb opposition was assessed in addition. After identifying task‐related voxels using statistical parametric mapping, activation was measured in five regions of interest (ROI; primary motor [M1] and somatosensory cortex [S1], premotor cortex, supplementary motor area [SMA] divided into preSMA and SMA‐proper, and cerebellum). Differences in the degree of activation across ROIs were found between elbow and knee movement. SMA‐proper activation was prominent for knee, but almost absent for elbow movement (P < 0.05); finger movement produced small but constant SMA‐proper activation. Ipsilateral M1 activation was detected during knee and finger movement, but was absent for the elbow task (P < 0.05). Knee movement showed less lateralization in M1 and S1 than other tasks (P < 0.05). The data demonstrate that central motor structures contribute differently to isolated elbow and knee movement. Activation during knee movement shows similarities to gait‐related activation patterns. Hum. Brain Mapping 17:131–140, 2002. © 2002 Wiley‐Liss, Inc.

Từ khóa


Tài liệu tham khảo

10.1016/S0166-4328(96)00145-3

10.1016/S0006-8993(99)01360-8

10.1006/nimg.2000.0737

10.1006/nimg.2001.0816

10.1097/00001756-200108080-00039

10.1017/S0317167100032947

10.1016/S0168-0102(98)00064-9

10.1016/0926-6410(95)00033-X

10.1007/BF00231461

10.1002/nbm.1940070110

10.1152/jn.1997.77.4.2164

10.1002/hbm.460010207

Friston K, 2000, Statistical parametric maps in functional imaging: a general linear approach, Hum Brain Mapp, 2, 189, 10.1002/hbm.460020402

10.1002/mrm.1910350312

10.1006/nimg.2001.0858

Grillner S, 1981, Handbook of physiology: motor control, 1179

10.1002/hbm.1025

10.1093/cercor/11.4.312

10.1006/nimg.2001.0776

10.1093/brain/118.4.913

10.1006/nimg.2000.0626

10.1097/00001756-199501000-00003

10.1523/JNEUROSCI.14-06-03462.1994

10.1093/cercor/5.2.111

10.1126/science.8342027

10.1016/S0006-8993(99)02416-6

10.1016/S0304-3940(99)00930-1

10.1097/00001756-199601310-00021

10.1002/1531-8249(200005)47:5<606::AID-ANA8>3.0.CO;2-L

10.1002/hbm.460030205

10.1006/nimg.2000.0556

10.1162/089892999563553

10.1002/(SICI)1097-0193(1998)6:2<105::AID-HBM3>3.0.CO;2-7

10.1097/00001756-199412000-00035

10.1016/0301-0082(92)90034-C

10.1097/00001756-199309150-00002

10.1006/nimg.2001.0905

10.1016/S1388-2457(99)00243-6

10.1093/brain/119.3.1023

10.1016/0028-3932(71)90067-4

10.1016/0166-4328(85)90073-7

Passingham RE, 1996, Supplementary sensorimotor area, 105

10.1097/00001756-200109170-00012

10.1523/JNEUROSCI.16-23-07688.1996

10.1212/WNL.43.11.2311

10.1523/JNEUROSCI.17-14-05528.1997

10.1097/00001756-199911260-00035

10.1016/S0013-4694(98)00022-4

10.1016/S0959-4388(96)80027-4

10.1006/nimg.2000.0733

10.1093/brain/116.6.1387

10.1152/jn.1995.73.1.373

10.1016/S0006-8993(98)00198-X

Talairach J, 1988, Co‐planar stereotactic atlas of the human brain

10.1007/s002210050437

10.1002/ana.410350617

10.1006/nimg.1995.1023

Zilles K, 1995, Mapping of human and macaque sensorimotor areas by integrating architectonic, transmitter receptor, MRI, and PET data, J Anat, 187, 515