Measurement of soil bacterial colony temperatures and isolation of a high heat-producing bacterium
Tóm tắt
The cellular temperatures of microorganisms are considered to be the same as those of their surroundings because the cellular volume is too small to maintain a cellular temperature that is different from the ambient temperature. However, by forming a colony or a biofilm, microorganisms may be able to maintain a cellular temperature that is different from the ambient temperature. In this study, we measured the temperatures of bacterial colonies isolated from soils using an infrared imager and investigated the thermogenesis by a bacterium that increases its colony temperature. The temperatures of some colonies were higher or lower than that of the surrounding medium. A bacterial isolate with the highest colony temperature was identified as Pseudomonas putida. This bacterial isolate had an increased colony temperature when it grew at a temperature suboptimal for its growth. Measurements of heat production using a microcalorimeter showed that the temperature of this extraordinary, microcalorimetrically determined thermogenesis corresponded with the thermographically observed increase in bacterial colony temperature. When investigating the effects of the energy source on this thermal behavior, we found that heat production by this bacterium increased without additional biomass production at a temperature suboptimal for its growth. We found that heat production by bacteria affected the bacterial colony temperature and that a bacterium identified as Pseudomonas putida could maintain a cellular temperature different from the ambient temperature, particularly at a sub-optimal growth temperature. The bacterial isolate P. putida KT1401 increased its colony temperature by an energy-spilling reaction when the incubation temperature limited its growth.
Tài liệu tham khảo
Bayne-Jones S, Rhees HS: Bacterial calorimetry II: relationship of heat production to phases of growth of bacteria. J Bacteriol. 1929, 17: 123-140.
Boling EA, Blanchard GC, Russell WJ: Bacterial identification by microcalorimetry. Nature. 1973, 241: 472-473. 10.1038/241472a0.
Few GA, Yau AO, Prichard FE, James AM: A microcalorimetric study of the growth of Klebsiella aerogenes in simple salts/glucose media. Microbios. 1976, 16: 37-48.
Bunker JC, James AM: Microcalorimetric studies on the effects of media and environmental conditions on the growth of bacteria. Microbios. 1986, 47: 177-188.
Chang-Li X, Hou-Kuhan T, Zhau-Hua S, Song-Sheng Q: Microcalorimetric study of bacterial growth. Thermochim Acta. 1988, 123: 33-41.
Li X, Liu Y, Deng F-J, Wang C-X, Qu S-S: Microcalorimetric study of the toxic effect of sodium selenite on the mitochondria metabolism of Carassius auratus liver. Biol Trace Elem Res. 2000, 77: 261-271. 10.1385/BTER:77:3:261.
Ding L, Li X, Liu P, Li S, Lv J: Study of the action of Se and Cu on the growth metabolism of Escherichia coli by microcalorimetry. Biol Trace Elem Res. 2010, 137: 364-372. 10.1007/s12011-009-8583-7.
Antoce AO, Pomohaci N, Antoce V, Fukuda H, Takahashi K, Amano N, Amachi T: Application of calorimetry to the study of ethanol tolerance of some yeast strains. Bioconrol Sci. 1996, 1: 3-10. 10.4265/bio.1.3.
Neijssel OM, Tempest DW: The role of energy-spilling reactions in the growth of Klebsiella aerogenes NCTC 418 in aerobic chemostat culture. Arch Microbiol. 1976, 110: 305-311. 10.1007/BF00690243.
Russell JB, Cook GM: Energetics of bacterial growth: balance of anabolic and catabolic reactions. Microbiol Rev. 1995, 59: 48-62.
Russell JB: The energy spilling reactions of bacteria and other organisms. J Mol Microbiol Biotechnol. 2007, 13: 1-11. 10.1159/000103591.
Russell JB, Strobel HJ: ATPase-dependent energy spilling by the ruminal bacterium, Streptococcus bovis. Arch Microbiol. 1990, 153: 378-383. 10.1007/BF00249009.
Patnaik R, Roof WD, Young RF, Liao JC: Stimulation of glucose catabolism in Escherichia coli by a potential futile cycle. J Bacteriol. 1992, 174: 7527-7532.
Otto R: Uncoupling of growth and acid production in Streptococcus cremoris. Arch Microbiol. 1986, 140: 225-230.
Rousset S, Alves-Guerra MC, Mozo J, Miroux B, Cassard-Doulcier AM, Bouillaud F, Ricquier D: The biology of mitochondrial uncoupling proteins. Diabetes. 2004, 53: S130-S135. 10.2337/diabetes.53.2007.S130.
Hiraishi A: Direct automated sequencing of 16S rDNA amplified by polymerase chain reaction from bacterial cultures without DNA purification. Lett Appl Microbiol. 1992, 15: 210-213. 10.1111/j.1472-765X.1992.tb00765.x.
Koga K, Suehiro Y, Matsuoka S, Takahashi K: Evaluation of growth activity of microbes in tea field soil using microbial calorimetry. J Biosci Bioeng. 2003, 95: 429-434.
Heinrich B: Thermoregulation in endothermic insects. Science. 1974, 185: 747-756. 10.1126/science.185.4153.747.
Meeuse BJD: Thermogenic respiration in aroids. Ann Rev Plant Physiol. 1975, 26: 117-126. 10.1146/annurev.pp.26.060175.001001.
Seymour RS, Schultze-Motel P: Respiration, temperature regulation and energetics of thermogenic inflorescences of the dragon lily Dracunculus vulgaris (araceae). Proc R Soc Lond B Biol Sci. 1999, 266: 1975-1983. 10.1098/rspb.1999.0875.
Seymour RS: Biophysics and physiology of temperature regulation in thermogenic flowers. Biosci Rep. 2001, 21: 223-236. 10.1023/A:1013608627084.
Kleiner D: Bacterial ammonium transport. FEMS Microbiol Rev. 1985, 32: 87-100. 10.1111/j.1574-6968.1985.tb01185.x.
Mulder MM, Teixeira de Mattos MJ, Postma PW, van Dam K: Energetic consequences of multiple K+ uptake systems in Escherichia coli. Biochim Biophys Acta. 1986, 851: 223-228. 10.1016/0005-2728(86)90129-5.
Lapara TM, Konopka A, Alleman JE: Energy spilling by thermophilic aerobes in potassium-limited continuous culture. Wat Res. 2000, 34: 2723-2726. 10.1016/S0043-1354(00)00008-7.