A robust stripping method for the removal of minor components from edible oils

Food Production, Processing and Nutrition - Tập 2 - Trang 1-9 - 2020
Abrehem Abad1, Fereidoon Shahidi1
1Department of Biochemistry, Memorial University of Newfoundland, St. John's, Canada

Tóm tắt

Column chromatographic techniques have commonly been used for effective stripping of edible oils from their minor components. However, this method is time consuming, which may lead to oil oxidation. Thus, in the present study, the oils of camelina seed, chia seed, sophia seed, corn, olive, and a docosahexaenoic acid single cell oil (DHASCO) were subjected to a simplified stripping method by using the stationary phase material and examining their minor components such as tocopherols, carotenoids, and chlorophylls as well as their oxidative stability. The results demonstrated that stripped oils prepared by using the simplified stripping method for 2 h were devoid of any tocopherol, chlorophylls and carotenoids and this was as effective as column chromatographic method. Thus, the simplified stripping method provides a facile means of producing stripped oil with better oxidative stability compared to the column chromatographic method.

Tài liệu tham khảo

Abuzaytoun, R., & Shahidi, F. (2006a). Oxidative stability of algal oils as affected by their minor components. Journal of Agricultural and Food Chemistry, 54(21), 8253–8260. Abuzaytoun, R., & Shahidi, F. (2006b). Oxidative stability of flax and hemp oils. Journal of the American Oil Chemists’ Society, 83(10), 855–861. AOCS. (1990). Tentative methods of the American Oil Chemists’ Society. Champaign: American Oil Chemists Society Press. Blekas, G., Tsimidou, M., & Boskou, D. (1995). Contribution of α-tocopherol to olive oil stability. Food Chemistry, 52(3), 289–294. Chen, B., McClements, D. J., & Decker, E. A. (2011). Minor components in food oils: A critical review of their roles on lipid oxidation chemistry in bulk oils and emulsions. Critical Reviews in Food Science and Nutrition, 51(10), 901–916. Hamilton, R. J. (1994). The chemistry of rancidity in foods. In J. C. Allen & R. J. Hamilton (Eds.), Rancidity in foods (pp. 1–21). Glasgow: Blackie Academic & Professional. IUPAC. (1987). In C. Paquot (Ed.), Standard methods for the analysts of oils, fats and derivatives (7th ed.). Oxford: Blackwell Scientific Publication. Jung, M. Y., Yoon, S. H., & Min, D. B. (1989). Effects of processing stepson the contents of minorcompounds and oxidation of soybean oil. Journal of the American Oil Chemists’ Society, 66(1), 118–120. Khan, M. A., & Shahidi, F. (2000). Oxidative stability of stripped and nonstripped borage and evening primrose oils and their emulsions in water. Journal of the American Oil Chemists’ Society, 77(9), 963–969. Khan, M. A., & Shahidi, F. (2001). Effects of natural and synthetic antioxidants on the oxidative stability of borage and evening primrose triacylglycerols. Food Chemistry, 75(4), 431–437. Khan, M. A., & Shahidi, F. (2002). Photooxidative stability of stripped and non-stripped borage and evening primrose oils and their emulsions in water. Food Chemistry, 79(1), 47–53. Lampi, A., Hopia, A., Ekholm, P., & Piironen, V. (1992). Method for the preparation of triacylglycerol fractions from rapeseed and other oils for autoxidation studies. Lebensmittel-Wissenschaft Technologie, 25, 386–388. Li, Q., Wang, J., & Shahidi, F. (2016). Chemical characteristics of cold-pressed blackberry, black raspberry, and blueberry seed oils and the role of the minor components in their oxidative stability. Journal of Agricultural and Food Chemistry, 64(26), 5410–5416. Miraliakbari, H., & Shahidi, F. (2008). Oxidative stability of tree nut oils. Journal of Agricultural and Food Chemistry, 56(12), 4751–4759. Mistry, B. S., & Min, D. B. (1988). Prooxidant effects of monoglycerides and diglycerides in soybean oil. Journal of Food Science, 53(6), 1896–1897. Sales, J.J., Sanchez, J., Ramli, U.S., Manaf, A.M., Williams, M., & Harwood, J.L. (2000). Biochemistry of lipid metabolism in olive and other oil fruits. Progress in Lipid Research, 39, 151–180. Shahidi, F., & Shukla, V. K. S. (1996). Nontriacylglycerol constituents of fats and oils. Inform-International News on Fats Oils and Related Materials, 7(11), 1227–1232. Shahidi, F., & Zhong, Y. (2010). Lipid oxidation and improving the oxidative stability. Chemical Society Reviews, 39(11), 4067–4079. Tian, F., Decker, E. A., & Goddard, J. M. (2013). Controlling lipid oxidation via a biomimetic iron chelating active packaging material. Journal of Agricultural and Food Chemistry, 61(50), 12397–12404.