Aging, energy, and oxidative stress in neurodegenerative diseases

Annals of Neurology - Tập 38 Số 3 - Trang 357-366 - 1995
M. Flint Beal1
1Neurochemistry Laboratory, Massachusetts General Hospital, Boston 02114, USA.

Tóm tắt

AbstractThe etiology of neurodegenerative diseases remains enigmatic; however, evidence for defects in energy metabolism, excitotoxicity, and for oxidative damage is increasingly compelling. It is likely that there is a complex interplay between these mechanisms. A defect in energy metabolism may lead to neuronal depolarization, activation of N‐methyl‐D‐aspartate excitatory amino acid‐receptors, and increases in intracellular calcium, which are buffered by mitochondria. Mitochondria are the major intracellular source of free radicals, and increased mitochondrial calcium concentrations enhance free radical generation. Mitochondrial DNA is particularly susceptible to oxidative stress, and there is evidence of age‐dependent damage and deterioration of respiratory enzyme activities with normal aging. This may contribute to the delayed onset and age dependence of neurodegenerative diseases. There is evidence for increased oxidative damage to macromolecules in amyotrophic lateral sclerosis, Huntington's disease, Parkinson's disease, and Alzheimer's disease. Potential therapeutic approaches include glutamate release inhibitors, excitatory amino acid antagonists, strategies to improve mitochondrial function, free radical scavengers, and trophic factors. All of these approaches appear promising in experimental studies and are now being applied to human studies.

Từ khóa


Tài liệu tham khảo

10.1212/WNL.42.4.733

10.1002/ana.410310202

10.1016/0006-8993(88)90765-2

Zeevalk GD, 1990, Chemically induced hypoglycemia and anoxia: relationship to glutamate receptor‐mediated toxicity in retina, J Pharmacol Exp Ther, 253, 1285

10.1523/JNEUROSCI.13-05-01993.1993

10.1016/0896-6273(93)90180-Y

10.1523/JNEUROSCI.13-05-02085.1993

10.1073/pnas.88.14.6368

10.1523/JNEUROSCI.13-06-02651.1993

10.1126/science.7522345

10.1038/364535a0

10.1016/0006-8993(93)91405-H

Chan PH, 1990, Reduced neurotoxicity in transgenic mice overexpressing human copper‐zinc‐superoxide dismutase, Stroke, 21, 11180

SchulzJB HenshawDR SiwekD et al. Involvement of free radicals in excitotoxicity in vivo.Neurochem1995(In press)

ChanPH ChenJ GafniJ et al.N‐Methyl‐D‐aspartatemediated neurotoxicity is associated with oxygen‐derived free radicals. Princeton Conf Cerebrovasc Dis 1995 (In press)

10.1016/0891-5849(94)90239-9

10.1042/bst0210330

Guidot DM, 1993, Absence of electron transport (Rho° State) restores growth of a manganesesuperoxide dismutase‐deficient Saccharomyces cerevisiae in hyperoxia, J Biol Chem, 268, 26699, 10.1016/S0021-9258(19)74369-5

10.1042/bj1340707

10.1042/bj1910421

10.1111/j.1432-1033.1994.tb18948.x

10.1111/j.1471-4159.1986.tb02823.x

10.1523/JNEUROSCI.14-01-00348.1994

10.1046/j.1471-4159.1994.63020584.x

Dugan LL, 1994, Imaging of mitochondrial oxygen radical production in cortical neurons exposed to NMDA, Soc Neurosci Abstr, 20, 1532

10.1073/pnas.85.17.6465

10.1002/ana.410340416

10.1111/j.1471-4159.1993.tb13430.x

Di Monte DA, 1993, Age‐dependent changes in mitochondrial energy production in striatum and cerebellum of the monkey brain, Neurodegeneration, 2, 93

10.1016/0022-510X(92)90270-U

10.1016/0925-4439(94)90061-2

10.1093/nar/18.23.6927

Corral‐Debrinski M, 1991, Hypoxemia is associated with mitochondrial DNA damage and geneinduction, JAMA, 266, 1812, 10.1001/jama.1991.03470130092035

10.1016/0925-4439(92)90059-V

10.1016/0002-8703(91)90020-I

10.1016/S0006-291X(05)81149-0

10.1016/0891-5849(94)90145-7

10.1038/ng1292-318

10.1038/ng1292-324

10.1016/0925-4439(94)90056-6

10.1016/0014-5793(93)81484-H

10.1006/bbrc.1993.2158

10.1016/0006-291X(91)91921-X

10.1016/0006-291X(92)92300-M

10.1111/j.1471-4159.1991.tb02134.x

10.1111/j.1471-4159.1992.tb10080.x

10.1111/j.1471-4159.1992.tb09429.x

10.1007/BF00167234

10.1016/0014-4886(89)90166-0

10.1038/jcbfm.1994.134

10.1111/j.1471-4159.1993.tb03633.x

10.1111/j.1471-4159.1993.tb03634.x

10.1016/0006-8993(94)91412-5

10.1017/S0317167100032212

10.1016/0006-8993(92)91371-K

Ludolph AC, 1992, 3‐Nitropropionic acid decreases cellular energy levels and causes neuronal degeneration in cortical explants, Neurodegeneration, 1, 155

Weller M, 1993, 3‐Nitropropionic acid is an indirect excitotoxin to cultured cerebellar granule neurons, Eur J Pharmacol, 248, 223

10.1111/j.1471-4159.1993.tb05859.x

10.1523/JNEUROSCI.13-10-04181.1993

10.1046/j.1471-4159.1994.63051772.x

Brouillet E, 1993, Chronic administration of 3‐nitropropionic acid induced selective striatal degeneration and abnormal choreiform movements in monkeys, Soc Neurosci Abstr, 19, 409

Przedborski S, 1992, Transgenic mice with increased Cu/Zn‐superoxide dismutase activity are resistant to N‐methyl‐4‐phenyl‐1,2,3,6‐tetrahydropyridine induced neurotoxicity, J Neurosci, 12, 1658, 10.1523/JNEUROSCI.12-05-01658.1992

10.1046/j.1471-4159.1995.64020936.x

10.1038/362059a0

10.1126/science.8351519

10.1111/j.1471-4159.1993.tb07478.x

10.1038/364584a0

10.1126/science.8209258

10.1073/pnas.91.10.4155

10.1111/j.1471-4159.1990.tb05809.x

10.1016/0304-3940(94)90372-7

10.1002/ana.410300409

10.1002/ana.410260606

Haas RH, 1994, Low platelet mitochon drial complex I activity in untreated early Parkinson disease, Neurology, 44, A178

10.1093/brain/116.6.1451

10.1016/0197-4580(94)90028-0

BowenBC BlockRE Sanchez‐RamosJ et al. Proton MR spectroscopy of the brain in 14 patients with Parkinsn's disease.Am J Neuroradiol1994(In press)

Chen YI, 1994, Evidence for impairment of energy metabolim in Parkinson's disease using in vivo localized MR spectroscopy, Proc Soc Magn Res, 1, 194

10.1006/geno.1993.1299

10.1002/mds.870090115

Sanchez‐Ramos JR, 1994, A marker of oxyradical‐mediated DNA damage (8‐hydroxy‐2′deoxyguanosine) is increased in nigro‐striatum of Parkinson's disease brain, Neurodegeneration, 3, 197

10.1016/0304-3940(92)90355-B

10.1002/ana.410360305

10.1002/ana.410350107

10.1212/WNL.43.12.2689

Koroshetz WJ, 1994, Evidence for a metabolic disorder in Huntington's disease, Neurology, 44, A338

10.1212/WNL.40.8.1302

10.1111/j.1471-4159.1992.tb09439.x

10.1046/j.1471-4159.1994.63062179.x

10.1212/WNL.44.6.1090

10.1016/0169-328X(94)90147-3

10.1097/00005072-199311000-00004

10.1016/0006-8993(92)90070-P

10.1111/j.1471-4159.1990.tb08858.x

10.1016/0304-3940(90)90226-Y

10.1016/0006-8993(94)91670-5

10.1073/pnas.88.23.10540

Pappolla MA, 1992, Immunohistochemical evidence of antioxidant stress in Alzheimer's disease, Am J Pathol, 140, 621

10.1073/pnas.91.16.7787

10.1002/ana.410360510

Gabuzda D, 1994, Inhibition of energy metabolism alters the processing of amyloid precursor protein and induces a potentially amyloidogenic derivative, J Biol Chem, 6, 13623, 10.1016/S0021-9258(17)36875-8

10.1016/0014-5793(93)81399-K

Strittmatter WJ, 1993, Binding of human apolipoprotein E to synthetic amyloid β peptide: isoform‐specific effects and implications for late‐onser Alzheimer disease, Proc Natl Acad Sci USA, 90, 8098, 10.1073/pnas.90.17.8098

10.1073/pnas.91.13.6206

10.1016/0024-3205(94)00813-2

10.1056/NEJM199403033300901

10.1056/NEJM199403033300907

10.3109/10715769409145637

10.1038/jcbfm.1992.88

10.1002/ana.410360613

Koroshetz W, 1993, Ubiquinone lowers occipital lactate levels in patients with Huntington's disease, Neurology, 43, A334

10.1073/pnas.87.13.5144

10.1016/0006-8993(94)91689-6

10.1042/bst0210334

10.1016/0304-3940(94)90593-2

10.1006/exnr.1993.1066

10.1038/jcbfm.1993.51