Microstate Analysis Reflects Maturation of the Preterm Brain

Brain Topography - Trang 1-14 - 2023
Tim Hermans1, Mohammad Khazaei2, Khadijeh Raeisi3, Pierpaolo Croce3,4, Gabriella Tamburro2,4, Anneleen Dereymaeker5,6, Maarten De Vos1,5, Filippo Zappasodi3,4,7, Silvia Comani3,4
1Department of Electrical Engineering (ESAT), STADIUS Center for Dynamical Systems, Signal Processing and Data Analytics, KU Leuven, Leuven, Belgium
2Department of Neuroscience, Imaging, and Clinical Sciences, “G. D’Annunzio” University of Chieti-Pescara, Chieti, Italy
3Department of Neuroscience Imaging and Clinical Sciences, G. d’Annunzio University of Chieti–Pescara, Chieti, Italy
4Behavioral Imaging and Neural Dynamics Center, G. d’Annunzio University of Chieti–Pescara, Chieti, Italy
5Department of Development and Regeneration, KU Leuven, Leuven, Belgium
6Neonatal Intensive Care Unit, UZ Leuven, Leuven, Belgium
7Institute for Advanced Biomedical Technologies, G. d’Annunzio University of Chieti–Pescara, Chieti, Italy

Tóm tắt

Preterm neonates are at risk of long-term neurodevelopmental impairments due to disruption of natural brain development. Electroencephalography (EEG) analysis can provide insights into brain development of preterm neonates. This study aims to explore the use of microstate (MS) analysis to evaluate global brain dynamics changes during maturation in preterm neonates with normal neurodevelopmental outcome. The dataset included 135 EEGs obtained from 48 neonates at varying postmenstrual ages (26.4 to 47.7 weeks), divided into four age groups. For each recording we extracted a 5-minute epoch during quiet sleep (QS) and during non-quiet sleep (NQS), resulting in eight groups (4 age group x 2 sleep states). We compared MS maps and corresponding (map-specific) MS metrics across groups using group-level maps. Additionally, we investigated individual map metrics. Four group-level MS maps accounted for approximately 70% of the global variance and showed non-random syntax. MS topographies and transitions changed significantly when neonates reached 37 weeks. For both sleep states and all MS maps, MS duration decreased and occurrence increased with age. The same relationships were found using individual maps, showing strong correlations (Pearson coefficients up to 0.74) between individual map metrics and post-menstrual age. Moreover, the Hurst exponent of the individual MS sequence decreased with age. The observed changes in MS metrics with age might reflect the development of the preterm brain, which is characterized by formation of neural networks. Therefore, MS analysis is a promising tool for monitoring preterm neonatal brain maturation, while our study can serve as a valuable reference for investigating EEGs of neonates with abnormal neurodevelopmental outcomes.

Tài liệu tham khảo

Ansari AH, De Wel O, Pillay K, Dereymaeker A, Jansen K, Van Huffel S, Naulaers G, De Vos M (2020) A convolutional neural network outperforming state-of-the-art sleep staging algorithms for both preterm and term infants. J Neural Eng 17:016028. https://doi.org/10.1088/1741-2552/ab5469 Back SA (2017) White matter injury in the preterm infant: pathology and mechanisms. Acta Neuropathol (Berl) 134:331–349. https://doi.org/10.1007/s00401-017-1718-6 Back SA, Miller SP (2014) Brain injury in premature neonates: a primary cerebral dysmaturation disorder? Premature cerebral dysmaturation. Ann Neurol 75:469–486. https://doi.org/10.1002/ana.24132 Brodbeck V, Kuhn A, von Wegner F, Morzelewski A, Tagliazucchi E, Borisov S, Michel CM, Laufs H (2012) EEG microstates of wakefulness and NREM sleep. NeuroImage 62:2129–2139. https://doi.org/10.1016/j.neuroimage.2012.05.060 Brown KL, Gartstein MA (2023) Microstate analysis in infancy. Infant Behav Dev 70:101785. https://doi.org/10.1016/j.infbeh.2022.101785 Custo A, Van De Ville D, Wells WM, Tomescu MI, Brunet D, Michel CM (2017) Electroencephalographic resting-state networks: source localization of Microstates. Brain Connect 7:671–682. https://doi.org/10.1089/brain.2016.0476 da Cruz JR, Favrod O, Roinishvili M, Chkonia E, Brand A, Mohr C, Figueiredo P, Herzog MH (2020) EEG microstates are a candidate endophenotype for schizophrenia. Nat Commun 11:3089. https://doi.org/10.1038/s41467-020-16914-1 De Wel O, Lavanga M, Dorado A, Jansen K, Dereymaeker A, Naulaers G, Van Huffel S (2017) Complexity analysis of neonatal EEG using Multiscale Entropy: applications in Brain Maturation and Sleep Stage classification. Entropy 19:516. https://doi.org/10.3390/e19100516 Dereymaeker A, Koolen N, Jansen K, Vervisch J, Ortibus E, De Vos M, Van Huffel S, Naulaers G (2016) The suppression curve as a quantitative approach for measuring brain maturation in preterm infants. Clin Neurophysiol 127:2760–2765. https://doi.org/10.1016/j.clinph.2016.05.362 Dereymaeker A, Pillay K, Vervisch J, Van Huffel S, Naulaers G, Jansen K, De Vos M (2017a) An automated quiet Sleep Detection Approach in Preterm Infants as a gateway to assess brain maturation. Int J Neural Syst 27:1750023. https://doi.org/10.1142/s012906571750023x Dereymaeker A, Pillay K, Vervisch J, De Vos M, Van Huffel S, Jansen K, Naulaers G (2017b) Review of sleep-EEG in preterm and term neonates. Early Hum Dev 113:87–103. https://doi.org/10.1016/j.earlhumdev.2017.07.003 Finn D, O’Toole JM, Dempsey EM, Boylan GB (2019) EEG for the assessment of neurological function in newborn infants immediately after birth. Arch Dis Child - Fetal Neonatal Ed 104:F510–F514. https://doi.org/10.1136/archdischild-2018-315231 Hermans T, Smets L, Lemmens K, Dereymaeker A, Jansen K, Naulaers G, Zappasodi F, Van Huffel S, Comani S, De Vos M (2023) A multi-task and multi-channel convolutional neural network for semi-supervised neonatal artefact detection. J Neural Eng. https://doi.org/10.1088/1741-2552/acbc4b Jasper H (1958) Report of the committee on methods of clinical examination in electroencephalography. Electroencephalogr Clin Neurophysiol 10:370–375. https://doi.org/10.1016/0013-4694(58)90053-1 Khanna A, Pascual-Leone A, Farzan F (2014) Reliability of resting-state microstate features in Electroencephalography. PLoS ONE 9:e114163. https://doi.org/10.1371/journal.pone.0114163 Khanna A, Pascual-Leone A, Michel CM, Farzan F (2015) Microstates in resting-state EEG: current status and future directions. Neurosci Biobehav Rev 49:105–113. https://doi.org/10.1016/j.neubiorev.2014.12.010 Khazaei M, Raeisi K, Croce P, Tamburro G, Tokariev A, Vanhatalo S, Zappasodi F, Comani S (2021) Characterization of the Functional Dynamics in the neonatal brain during REM and NREM Sleep States by means of Microstate Analysis. Brain Topogr 34(5):555–567. https://doi.org/10.1007/s10548-021-00861-1 Kinney HC, Volpe JJ (2012) Modeling the Encephalopathy of Prematurity in Animals: The Important Role of Translational Research. Neurol. Res. Int. 2012, 1–17. https://doi.org/10.1155/2012/295389 Koenig T, Melie-García L (2009) Statistical analysis of multichannel scalp field data. In: Michel CM, Koenig T, Brandeis D, Gianotti LRR, Wackermann J (eds) Electrical neuroimaging. Cambridge University Press, pp 169–190. https://doi.org/10.1017/CBO9780511596889.009 Koenig T, Prichep L, Lehmann D, Sosa PV, Braeker E, Kleinlogel H, Isenhart R, John ER (2002) Millisecond by Millisecond, Year by Year: Normative EEG Microstates and Developmental Stages. NeuroImage 16:41–48. https://doi.org/10.1006/nimg.2002.1070 Kostović I, Jovanov-Milošević N (2006) The development of cerebral connections during the first 20–45 weeks’ gestation. Semin Fetal Neonatal Med 11:415–422. https://doi.org/10.1016/j.siny.2006.07.001 Lavanga M, De Wel O, Caicedo A, Jansen K, Dereymaeker A, Naulaers G, Van Huffel S (2017) Monitoring effective connectivity in the Preterm Brain: a Graph Approach to Study Maturation. Complexity 2017:1–13. https://doi.org/10.1155/2017/9078541 Lavanga M, De Wel O, Caicedo A, Jansen K, Dereymaeker A, Naulaers G, Van Huffel S (2018) A brain-age model for preterm infants based on functional connectivity. Physiol Meas 39:044006. https://doi.org/10.1088/1361-6579/aabac4 Lehmann D, Ozaki H, Pal I (1987) EEG alpha map series: brain micro-states by space-oriented adaptive segmentation. Electroencephalogr Clin Neurophysiol 67:271–288. https://doi.org/10.1016/0013-4694(87)90025-3 Lehmann D, Faber PL, Galderisi S, Herrmann WM, Kinoshita T, Koukkou M, Mucci A, Pascual-Marqui RD, Saito N, Wackermann J, Winterer G, Koenig T (2005) EEG microstate duration and syntax in acute, medication-naïve, first-episode schizophrenia: a multi-center study. Psychiatry Res Neuroimaging 138:141–156. https://doi.org/10.1016/j.pscychresns.2004.05.007 Michel CM, Koenig T (2018) EEG microstates as a tool for studying the temporal dynamics of whole-brain neuronal networks: a review. NeuroImage 180:577–593. https://doi.org/10.1016/j.neuroimage.2017.11.062 Murray MM, Brunet D, Michel CM (2008) Topographic ERP analyses: a step-by-step Tutorial Review. Brain Topogr 20:249–264. https://doi.org/10.1007/s10548-008-0054-5 Nishida K, Morishima Y, Yoshimura M, Isotani T, Irisawa S, Jann K, Dierks T, Strik W, Kinoshita T, Koenig T (2013) EEG microstates associated with salience and frontoparietal networks in frontotemporal dementia, schizophrenia and Alzheimer’s disease. Clin Neurophysiol 124:1106–1114. https://doi.org/10.1016/j.clinph.2013.01.005 Pascual-Marqui RD, Lehmann D (1993) Comparison of topographic maps and the reference electrode: comments on two papers by Desmedt and collaborators. Electroencephalogr Clin Neurophysiol Potentials Sect. 88:530–531. https://doi.org/10.1016/0168-5597(93)90042-N Pascual-Marqui RD, Michel CM, Lehmann D (1995) Segmentation of brain electrical activity into microstates: model estimation and validation. IEEE Trans Biomed Eng 42:658–665. https://doi.org/10.1109/10.391164 Pavlidis E, Lloyd RO, Mathieson S, Boylan GB (2017) A review of important electroencephalogram features for the assessment of brain maturation in premature infants. Acta Paediatr 106:1394–1408. https://doi.org/10.1111/apa.13956 Pillay K, Dereymaeker A, Jansen K, Naulaers G, De Vos M (2020) Applying a data-driven approach to quantify EEG maturational deviations in preterms with normal and abnormal neurodevelopmental outcomes. Sci Rep 10:7288. https://doi.org/10.1038/s41598-020-64211-0 Rupawala M, Bucsea O, Laudiano-Dray MP, Whitehead K, Meek J, Fitzgerald M, Olhede S, Jones L, Fabrizi L (2023) A developmental shift in habituation to pain in human neonates. Curr Biol S0960982223002440. https://doi.org/10.1016/j.cub.2023.02.071 Stevenson NJ, Oberdorfer L, Tataranno M-L, Breakspear M, Colditz PB, de Vries LS, Benders MJNL, Klebermass-Schrehof K, Vanhatalo S, Roberts JA (2020) Automated cot-side tracking of functional brain age in preterm infants. Ann Clin Transl Neurol 7:891–902. https://doi.org/10.1002/acn3.51043 Tait L, Zhang J (2022a) MEG cortical microstates: spatiotemporal characteristics, dynamic functional connectivity and stimulus-evoked responses. NeuroImage 251:119006. https://doi.org/10.1016/j.neuroimage.2022.119006 Tait L, Zhang J (2022b) +microstate: a MATLAB toolbox for brain microstate analysis in sensor and cortical EEG/MEG. NeuroImage 258:119346. https://doi.org/10.1016/j.neuroimage.2022.119346 Tamburro G, Jansen K, Lemmens K, Dereymaeker A, Naulaers G, De Vos M, Comani S (2022) Automated detection and removal of flat line segments and large amplitude fluctuations in neonatal electroencephalography. PeerJ 10:e13734. https://doi.org/10.7717/peerj.13734 Tau GZ, Peterson BS (2010) Normal Development of Brain Circuits. Neuropsychopharmacol 35:147–168. https://doi.org/10.1038/npp.2009.115 Tomescu MI, Rihs TA, Rochas V, Hardmeier M, Britz J, Allali G, Fuhr P, Eliez S, Michel CM (2018) From swing to cane: sex differences of EEG resting-state temporal patterns during maturation and aging. Dev Cogn Neurosci 31:58–66. https://doi.org/10.1016/j.dcn.2018.04.011 van ’t Westende C, Geraedts VJ, van Ramesdonk T, Dudink J, Schoonmade LJ, van der Knaap MS, Stam CJ, van de Pol LA (2022) Neonatal quantitative electroencephalography and long-term outcomes: a systematic review. Dev Med Child Neurol 64:413–420. https://doi.org/10.1111/dmcn.15133 Van De Ville D, Britz J, Michel CM (2010) EEG microstate sequences in healthy humans at rest reveal scale-free dynamics. Proc. Natl. Acad. Sci. 107:18179–18184. https://doi.org/10.1073/pnas.1007841107 Vellante F, Ferri F, Baroni G, Croce P, Migliorati D, Pettoruso M, De Berardis D, Martinotti G, Zappasodi F, Giannantonio MD (2020) Euthymic bipolar disorder patients and EEG microstates: a neural signature of their abnormal self experience? J Affect Disord 272:326–334. https://doi.org/10.1016/j.jad.2020.03.175 Volpe JJ (2009) Brain injury in premature infants: a complex amalgam of destructive and developmental disturbances. Lancet Neurol 8:110–124. https://doi.org/10.1016/S1474-4422(08)70294-1 Volpe JJ (2019) Dysmaturation of premature brain: Importance, Cellular Mechanisms, and potential interventions. Pediatr Neurol 95:42–66. https://doi.org/10.1016/j.pediatrneurol.2019.02.016 Webb L, Kauppila M, Roberts JA, Vanhatalo S, Stevenson NJ (2021) Automated detection of artefacts in neonatal EEG with residual neural networks. Comput Methods Programs Biomed 208:106194. https://doi.org/10.1016/j.cmpb.2021.106194 Zappasodi F, Croce P, Giordani A, Assenza G, Giannantoni NM, Profice P, Granata G, Rossini PM, Tecchio F (2017) Prognostic Value of EEG Microstates in Acute Stroke. Brain Topogr 30:698–710. https://doi.org/10.1007/s10548-017-0572-0