Influence of optical losses on the dynamic characteristics of linear arrays of near-infrared vertical-cavity surface-emitting lasers
Tóm tắt
The effect of the level of internal and external optical losses on the dynamic characteristics of vertical-cavity surface-emitting lasers (VCSELs) in the spectral region of 850 nm is studied. It is shown that an increase in optical losses leads to a decrease in the speed of laser response and to the predominance of thermal effects, while a decrease in losses for the output of radiation brings about an increase in the response speed of the laser and the dominance of damping of the effective modulation frequency. Linear matrix emitters with the 1 × 4 format based on fast-response VCSEL with individual element addressing are produced and studied. Individual laser emitters with a current-aperture diameter of 5–7 μm provide lasing in the continuous-wave mode at room temperature in the region of 850 nm with threshold currents no higher than 0.5 mA, a differential efficiency no lower than 0.6 W/A, a modulation frequency as high as 20 GHz, and a MCEF factor of ∼10 GHz/mA1/2.
Tài liệu tham khảo
D. Collins, N. Li, D. Kuchta, F. Doany, C. Schow, C. Helms, and L. Yang, Proc. SPIE 6908, 6908–09 (2008).
A. Al-Omari and K. L. Lear, IEEE Trans. Dielectr. Electric. Insulat. 12, 1151 (2005).
Y. C. Chang, C. S. Wang, L. A. Johansson, and L. A. Coldren, Electron. Lett. 42, 1281 (2006).
A. M. Nadtochiy, S. A. Blokhin, A. G. Kuz’menkov, M. V. Maksimov, N. A. Maleev, S. I. Troshkov, N. N. Ledentsov, V. M. Ustinov, A. Mutig, and D. Bimberg, Tech. Phys. Lett. 38, 106 (2012).
F. Koyama, Proc. SPIE 5595, 194 (2004).
S. B. Healy, E. P. O’Reilly, J. S. Gustavsson, P. West- bergh, _. Haglund, A. Larsson, and A. Joel, IEEE J. Quantum Electron. 46, 504 (2010).
Y.-C. Chang and L. A. Coldren, IEEE J. Sel. Top. Quant. Electron. 15, 704 (2009).
S. A. Blokhin, J. A. Lott, A. Mutig, G. Fiol, N. N. Ledentsov, M. V. Maximov, A. M. Nadtochiy, V. A. Shchukin, and D. Bimberg, Electron. Lett. 45, 501 (2009).
P. Westbergh, J. S. Gustavsson, B. Koegel, E. Haglund, A. Larsson, A. Mutig, A. Nadtochiy, D. Bimberg, and A. Joel, Electron. Lett. 46, 1014 (2009).
W. Hofmann, P. Moser, P. Wolf, G. Larisch, W. Unrau, and D. Bimberg, Proc. SPIE 8276, 827605 (2012).
A. M. Nadtochiy, S. A. Blokhin, A. Mutig, J. Lott, N. N. Ledentsov, L. Ya. Karachinskii, M. V. Maksimov, V. M. Ustinov, and D. Bimberg, Semiconductors 45, 679 (2011).
P. Westbergh, J. S. Gustavsson, E. Haglund, M. Skoeld, A. Joel, and A. Larsson, IEEE J. Sel. Top. Quant. Electron. 15, 694 (2009).
S. A. Blokhin, A. Mutig, A. M. Nadtochiy, G. Fiol, J. A. Lott, V. A. Shchukin, N. N. Ledentsov, and D. Bimberg, in Proceedings of the 18th International Symposium on Nanostructures: Physics and Technology, St.-Petersburg, Russia, June 21–26, 2010.
S. A. Blokhin, J. A. Lott, N. N. Ledentsov, L. Ya. Karachinsky, A. G. Kuzmenkov, I. I. Novikov, N. A. Maleev, G. Fiol, and D. Bimberg, Proc. SPIE 8308, 830819 (2011).
L. A. Coldren and S. W. Corzine, Diode Lasers and Photonic Integrated Circuits (Wiley, New York, 1995).
G. P. Agraval, Fiber Optic Communication Systems (Wiley, New York, 1997).