Magnetic Domain-Wall Racetrack Memory

American Association for the Advancement of Science (AAAS) - Tập 320 Số 5873 - Trang 190-194 - 2008
S. Parkin1, Masamitsu Hayashi1, L. Thomas1
1IBM Almaden Research Center, San Jose, CA 95120–6099, USA.

Tóm tắt

Recent developments in the controlled movement of domain walls in magnetic nanowires by short pulses of spin-polarized current give promise of a nonvolatile memory device with the high performance and reliability of conventional solid-state memory but at the low cost of conventional magnetic disk drive storage. The racetrack memory described in this review comprises an array of magnetic nanowires arranged horizontally or vertically on a silicon chip. Individual spintronic reading and writing nanodevices are used to modify or read a train of ∼10 to 100 domain walls, which store a series of data bits in each nanowire. This racetrack memory is an example of the move toward innately three-dimensional microelectronic devices.

Từ khóa


Tài liệu tham khảo

S. S. P. Parkin U.S. Patents 6 834 005 6 898 132 6 920 062 7 031 178 and 7 236 386 (2004 to 2007).

A. Hubert R. Schäfer Magnetic Domains: The Analysis of Magnetic Microstructures (Springer Berlin 1998).

S. S. P. Parkinet al., Proc. IEEE91, 661 (2003).

10.1016/0304-8853(96)00062-5

10.1103/PhysRevB.54.9353

R. E. Matick Computer Storage Systems and Technology (Wiley New York 1977).

S. Middelhoek P. K. George P. Dekker Physics of Computer Memory Devices (Academic Press London 1976).

N. F. Mott H. Jones Theory of the Properties of Metals and Alloys (Oxford Univ. Press Oxford 1936).

L. Berger, Phys. Rev. B33, 1572 (1986).

L. Berger, J. Appl. Phys.63, 1663 (1988).

10.1103/PhysRevLett.92.086601

Z. Li, S. Zhang, Phys. Rev. Lett.92, 207203 (2004).

10.1103/PhysRevLett.93.127204

10.1209/epl/i2004-10452-6

10.1103/PhysRevLett.95.107204

See supporting material on Science Online.

10.1209/epl/i2003-10112-5

10.1103/PhysRevLett.92.077205

10.1038/nature03009

10.1103/PhysRevLett.94.106601

M. Hayashiet al., Phys. Rev. Lett.96, 197207 (2006).

10.1103/PhysRevLett.97.057203

L. Thomaset al., Nature443, 197 (2006).

10.1103/PhysRevLett.98.037204

10.1063/1.2746952

10.1126/science.1137662

10.1038/nature02441

10.1103/PhysRevLett.95.117203

D. Ravelosona, S. Mangin, J. A. Katine, E. E. Fullerton, B. D. Terris, Appl. Phys. Lett.90, 072508 (2007).

10.1103/PhysRevLett.98.247204

10.1016/j.jmmm.2004.11.355

R. D. McMichael, M. J. Donahue, IEEE Trans. Magn.33, 4167 (1997).

10.1103/PhysRevLett.97.207205

10.1038/nphys464

N. L. Schryer, L. R. Walker, J. Appl. Phys.45, 5406 (1974).

G. S. D. Beach, C. Nistor, C. Knutson, M. Tsoi, J. L. Erskine, Nat. Mater.4, 741 (2005).

A. P. Malozemoff J. C. Slonczewski Magnetic Domain Walls in Bubble Material (Academic Press New York 1979).

S. S. P. Parkin, R. Bhadra, K. P. Roche, Phys. Rev. Lett.66, 2152 (1991).

S. S. P. Parkinet al., Nat. Mater.3, 862 (2004).

We thank K. Roche and B. Gallagher for their contributions to this paper R. Moriya and C. Rettner for help with sample preparation and our colleagues in the Magnetoelectronics group at Almaden for many useful discussions.