Multi-tissue gene-expression analysis in a mouse model of thyroid hormone resistance

Genome Biology - Tập 5 - Trang 1-17 - 2004
Lance D Miller1, Peter McPhie2, Hideyo Suzuki3, Yasuhito Kato3, Edison T Liu1, Sheue-yann Cheng3
1Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, 138672
2National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, USA
3Laboratory of Molecular Biology, National Cancer Institute, Bethesda, USA

Tóm tắt

Resistance to thyroid hormone (RTH) is caused by mutations of the thyroid hormone receptor β (TRβ) gene. To understand the transcriptional program underlying TRβ mutant-induced phenotypic expression of RTH, cDNA microarrays were used to profile the expression of 11,500 genes in a mouse model of human RTH. We analyzed transcript levels in cerebellum, heart and white adipose tissue from a knock-in mouse (TRβPV/PV mouse) that harbors a human mutation (referred to as PV) and faithfully reproduces human RTH. Because TRβPV/PV mice have elevated thyroid hormone (T3), to define T3-responsive genes in the context of normal TRβ, we also analyzed T3 effects in hyperthyroid wild-type gender-matched littermates. Microarray analysis revealed 163 genes responsive to T3 treatment and 187 genes differentially expressed between TRβPV/PV mice and wild-type littermates. Both the magnitude and gene make-up of the transcriptional response varied widely across tissues and conditions. We identified genes modulated in T3-dependent PV-independent, T3- and PV-dependent, and T3-independent PV-dependent pathways that illuminated the biological consequences of PV action in vivo. Most T3-responsive genes that were dysregulated in the heart and white adipose tissue of TRβPV/PV mice were repressed in T3-treated wild-type mice and upregulated in TRβPV/PV mice, suggesting the inappropriate activation of T3-suppressed genes in RTH. Comprehensive multi-tissue gene-expression analysis uncovered complex multiple signaling pathways that mediate the molecular actions of TRβ mutants in vivo. In particular, the T3-independent mutant-dependent genomic response unveiled the contribution of a novel 'change-of-function' of TRβ mutants to the pathogenesis of RTH. Thus, the molecular actions of TRβ mutants are more complex than previously envisioned.

Tài liệu tham khảo

Cheng SY: Multiple mechanisms for regulation of the transcriptional activity of thyroid hormone receptors. Rev Endocr Metab Disord. 2000, 1: 9-18. 10.1023/A:1010052101214. Yen PM: Physiological and molecular basis of thyroid hormone action. Physiol Rev. 2001, 81: 1097-1142. Harvey CB, Williams GR: Mechanism of thyroid hormone action. Thyroid. 2002, 12: 441-446. 10.1089/105072502760143791. O'Shea PJ, Williams GR: Insight into the physiological actions of thyroid hormone receptors from genetically modified mice. J Endocrinol. 2002, 175: 553-570. Forrest D, Vennstrom B: Functions of thyroid hormone receptors in mice. Thyroid. 2000, 10: 41-52. McKenna NJ, Lanz RB, O'Malley BW: Nuclear receptor coregulators: cellular and molecular biology. Endocrinol Rev. 1999, 20: 321-344. 10.1210/er.20.3.321. Refetoff S, Weiss RE, Usala SJ: The syndromes of resistance to thyroid hormone. Endocr Rev. 1993, 14: 348-399. 10.1210/er.14.3.348. Yoh SM, Chatterjee VK, Privalsky ML: Thyroid hormone resistance syndrome manifests as an aberrant interaction between mutant T3 receptors and transcriptional corepressors. Mol Endocrinol. 1997, 11: 470-480. 10.1210/me.11.4.470. Weiss RE, Refetoff S: Resistance to thyroid hormone. Rev Endocr Metab Disord. 2000, 1: 97-108. 10.1023/A:1010072605757. Zhang XY, Kaneshige M, Kamiya Y, Kaneshige K, McPhie P, Cheng SY: Differential expression of thyroid hormone receptor isoforms dictates the dominant negative activity of mutant beta receptor. Mol Endocr. 2002, 16: 2077-2092. 10.1210/me.2002-0080. Kaneshige M, Kaneshige K, Zhu X, Dace A, Garrett L, Carter TA, Kazlauskaite R, Pankratz DG, Wynshaw-Boris A, Refetoff S, et al: Mice with a targeted mutation in the thyroid hormone beta receptor gene exhibit impaired growth and resistance to thyroid hormone. Proc Natl Acad Sci USA. 2000, 97: 13209-13214. 10.1073/pnas.230285997. Parrilla R, Mixson AJ, McPherson JA, McClaskey JH, Weintraub BD: Characterization of seven novel mutations of the c-erbA beta gene in unrelated kindreds with generalized thyroid hormone resistance. Evidence for two "hot spot" regions of the ligand binding domain. J Clin Invest. 1991, 88: 2123-2130. Griffith A, Szymko Y, Kaneshige M, Quinonez R, Kaneshige K, Heintz K, Masteroianni M, Kelly M, Cheng SY: Knock-in mouse model for resistance to thyroid hormone (RTH): an RTH mutation in the thyroid hormone receptor β gene disrupts cochlear morphogenesis. J Assoc Res Otolaryngol. 2002, 3: 279-288. 10.1007/s101620010092. Kamiya Y, Zhang XY, Ying H, Kato Y, Willingham MC, Xu J, O'Malley BW, Cheng SY: Modulation by steroid receptor coactivator-1 of target-tissue responsiveness in resistance to thyroid hormone. Endocrinology. 2003, 144: 4144-4153. 10.1210/en.2003-0239. Pritchard CC, Hsu L, Delrow J, Nelson PS: Project normal: defining normal variance in mouse gene expression. Proc Natl Acad Sci USA. 2001, 98: 13266-13271. 10.1073/pnas.221465998. Robbins J: Thyroid hormone transport proteins and the physiology of hormone binding. In The Thyroid. Edited by: Braverman LE, Utiger RD. 2000, Philadelphia, PA: Lippincott William and Wilkins, 105-120. 8 Sotiriou C, Powles TJ, Dowsett M, Jazaeri AA, Feldman AL, Assersohn L, Gadisetti C, Libutti SK, Liu ET: Gene expression profiles derived from fine needle aspiration correlate with response to systemic chemotherapy in breast cancer. Breast Cancer Res. 2002, 4: R3-10.1186/bcr433. Sadow PM, Chassande O, Gauthier K, Samarut J, Xu J, O'Malley BW, Weiss RE: Specificity of thyroid hormone receptor subtype and steroid receptor coactivator-1 on thyroid hormone action. Am J Physiol Endocrinol Metab. 2003, 284: E36-E46. Miller L, Park K, Guo Q, Alkharouf N, Malek R, Lee N, Liu E, Cheng SY: Silencing of Wnt signaling and activation of multiple metabolic pathways in response to thyroid hormone-stimulated cell proliferation. Mol Cell Biol. 2001, 21: 6626-6639. 10.1128/MCB.21.19.6626-6639.2001. Dillmann WH, Gloss BR: The role of thyroid hormone receptors in the heart. Methods Mol Biol. 2002, 202: 55-70. 10.1385/1-59259-174-4:55. Fadel BM, Ellahham S, Ringel MD, Lindsay J, Wartofsky L, Burman KD: Hyperthyroid heart disease. Clin Cardiol. 2000, 23: 402-408. Refetoff S, Weiss RE, Usala SJ: The syndromes of resistance to thyroid hormone. Endocr Rev. 1993, 14: 348-399. 10.1210/er.14.3.348. Kahaly GJ, Matthews CH, Mohr-Kahaly S, Richards CA, Chatterjee VK: Cardiac involvement in thyroid hormone resistance. J Clin Endocrinol Metab. 2002, 87: 204-212. 10.1210/jc.87.1.204. Gene Ontology Consortium. [http://www.geneontology.org] Reyne Y, Nougues J, Cambon B, Viguerie-Bascands N, Casteilla L: Expression of c-erbA alpha, c-erbA beta and Rev-erbA alpha mRNA during the conversion of brown adipose tissue into white adipose tissue. Mol Cell Endocrinol. 1996, 116: 59-65. 10.1016/0303-7207(95)03696-2. Viguerie N, Millet L, Avizou S, Vidal H, Larrouy D, Langin D: Regulation of human adipocyte gene expression by thyroid hormone. J Clin Endocrinol Metab. 2002, 87: 630-634. 10.1210/jc.87.2.630. Pucci E, Chiovato L, Pinchera A: Thyroid and lipid metabolism. Int J Obes Relat Metab Disord. 2000, S109-S112. 24 Suppl 2 Huber O: Structure and function of desmosomal proteins and their role in development and disease. Cell Mol Life Sci. 2003, 60: 1872-1890. 10.1007/s00018-003-3050-7. Koibuchi N, Chin WW: Thyroid hormone action and brain development. Trends Endocrinol Metab. 2000, 11: 123-128. 10.1016/S1043-2760(00)00238-1. Poguet AL, Legrand C, Feng X, Yen PM, Meltzer P, Samarut J, Flamant F: Microarray analysis of knockout mice identifies cyclin D2 as a possible mediator for the action of thyroid hormone during the postnatal development of the cerebellum. Dev Biol. 2003, 254: 188-199. 10.1016/S0012-1606(02)00039-8. Chanoine JP, Braverman LE: The role of transthyretin in the transport of thyroid hormone to cerebrospinal fluid and brain. Acta Med Austriaca. 1992, 19 Suppl 1: 25-28. Vincent J, Legrand C, Rabie A, Legrand J: Effects of thyroid hormone on synaptogenesis in the molecular layer of the developing rat cerebellum. J Physiol (Paris). 1982, 78: 729-738. Madeira MD, Paula-Barbosa MM: Reorganization of mossy fiber synapses in male and female hypothyroid rats: a stereological study. J Comp Neurol. 1993, 337: 334-352. Hall AC, Lucas FR, Salinas PC: Axonal remodeling and synaptic differentiation in the cerebellum is regulated by WNT-7a signaling. Cell. 2000, 100: 525-535. 10.1016/S0092-8674(00)80689-3. Salinas PC: Wnt factors in axonal remodelling and synaptogenesis. Biochem Soc Symp. 1999, 65: 101-109. Feng X, Jiang Y, Meltzer P, Yen PM: Thyroid hormone regulation of hepatic genes in vivo detected by complementary DNA microarray. Mol Endocrinol. 2000, 14: 947-955. 10.1210/me.14.7.947. Wood WM, Sarapura VD, Dowding JM, Woodmansee WW, Haakinson DJ, Gordon DF, Ridgway EC: Early gene expression changes preceding thyroid hormone-induced involution of a thyrotrope tumor. Endocrinology. 2002, 143: 347-359. 10.1210/en.143.2.347. Davis PJ, Tillmann HC, Davis FB, Wehling M: Comparison of the mechanisms of nongenomic actions of thyroid hormone and steroid hormones. J Endocrinol Invest. 2002, 25: 377-388. Shupnik MA, Chin WW, Habener JF, Ridgway EC: Transcriptional regulation of the thyrotropin subunit genes by thyroid hormone. J Biol Chem. 1985, 260: 2900-2903. Goodridge AG: Regulation of the gene for fatty acid synthase. Fed Proc. 1986, 45: 2399-2405. Gharbi-Chihi J, Facchinetti T, Berge-Lefranc JL, Bonne J, Torresani J: Triiodothyronine control of ATP-citrate lyase and malic enzyme during differentiation of a murine preadipocyte cell line. Horm Metab Res. 1991, 23: 423-427. Sugisaki T, Noguchi T, Beamer WG, Kozak LP: Genetic hypothyroid mice: normal cerebellar morphology but altered glycerol-3-phosphate dehydrogenase in Bergmann glia. J Neurosci. 1991, 11: 2614-2621. Xiong S, Chirala SS, Hsu MH, Wakil SJ: Identification of thyroid hormone response elements in the human fatty acid synthase promoter. Proc Natl Acad Sci USA. 1998, 95: 12260-12265. 10.1073/pnas.95.21.12260. Weitzel JM, Kutz S, Radtke C, Grott S, Seitz HJ: Hormonal regulation of multiple promoters of the rat mitochondrial glycerol-3-phosphate dehydrogenase gene: identification of a complex hormone-response element in the ubiquitous promoter B. Eur J Biochem. 2001, 268: 4095-4103. 10.1046/j.1432-1327.2001.02332.x. Liu YY, Schultz JJ, Brent GA: A thyroid hormone receptor alpha gene mutation (P398H) is associated with visceral adiposity and impaired catecholamine-stimulated lipolysis in mice. J Biol Chem. 2003, 278: 38913-38920. 10.1074/jbc.M306120200. Barrera-Hernandez G, Park KS, Dace A, Zhan Q, Cheng SY: Thyroid hormone-induced cell proliferation in GC cells is mediated by changes in G1 cyclin/cyclin-dependent kinase levels and activity. Endocrinology. 1999, 140: 5267-5274. 10.1210/en.140.11.5267. Pibiri M, Ledda-Columbano GM, Cossu C, Simbula G, Menegazzi M, Shinozuka H, Columbano A: Cyclin D1 is an early target in hepatocyte proliferation induced by thyroid hormone (T3). FASEB J. 2001, 15: 1006-1013. 10.1096/fj.00-0416com. Gonzalez-Sancho JM, Figueroa A, Lopez-Barahona M, Lopez E, Beug H, Munoz A: Inhibition of proliferation and expression of T1 and cyclin D1 genes by thyroid hormone in mammary epithelial cells. Mol Carcinog. 2002, 34: 25-34. 10.1002/mc.10046. (Erratum in: Mol Carcinog 2002, 34:164) Perez-Juste G, Aranda A: The cyclin-dependent kinase inhibitor p27(Kip1) is involved in thyroid hormone-mediated neuronal differentiation. J Biol Chem. 1999, 274: 5026-5031. 10.1074/jbc.274.8.5026. Nishikawa A, Kaiho M, Yoshizato K: Cell death in the anuran tadpole tail: thyroid hormone induces keratinization and tail-specific growth inhibition of epidermal cells. Dev Biol. 1989, 131: 337-344. James RA, Sarapura VD, Bruns C, Raulf F, Dowding JM, Gordon DF, Wood WM, Ridgway EC: Thyroid hormone-induced expression of specific somatostatin receptor subtypes correlates with involution of the TtT-97 murine thyrotrope tumor. Endocrinology. 1997, 138: 719-724. 10.1210/en.138.2.719. Dinda S, Sanchez A, Moudgil V: Estrogen-like effects of thyroid hormone on the regulation of tumor suppressor proteins, p53 and retinoblastoma, in breast cancer cells. Oncogene. 2002, 21: 761-768. 10.1038/sj.onc.1205136. Kastan MB, Zhan Q, el-Deiry WS, Carrier F, Jacks T, Walsh WV, Plunkett BS, Vogelstein B, Fornace AJ: A mammalian cell cycle checkpoint pathway utilizing p53 and GADD45 is defective in ataxia-telangiectasia. Cell. 1992, 71: 587-597. el-Deiry WS, Tokino T, Velculescu VE, Levy DB, Parsons R, Trent JM, Lin D, Mercer WE, Kinzler KW, Vogelstein B: WAF1, a potential mediator of p53 tumor suppression. Cell. 1993, 75: 817-825. Jaiswal AS, Narayan S: p53-dependent transcriptional regulation of the APC promoter in colon cancer cells treated with DNA alkylating agents. J Biol Chem. 2001, 276: 18193-18199. 10.1074/jbc.M101298200. Foster MP, Montecino-Rodriguez E, Dorshkind K: Proliferation of bone marrow pro-B cells is dependent on stimulation by the pituitary/thyroid axis. J Immunol. 1999, 163: 5883-5890. Watanabe K, Iwatani Y, Hidaka Y, Watanabe M, Amino N: Long-term effects of thyroid hormone on lymphocyte subsets in spleens and thymuses of mice. Endocr J. 1995, 42: 661-668. Ruan H, Zarnowski MJ, Cushman SW, Lodish HF: Standard isolation of primary adipose cells from mouse epididymal fat pads induces inflammatory mediators and down-regulates adipocyte genes. J Biol Chem. 2003, 278: 47585-47593. 10.1074/jbc.M305257200. Gloss B, Trost S, Bluhm W, Swanson E, Clark R, Winkfein R, Janzen K, Giles W, Chassande O, Samarut J, Dillmann W: Cardiac ion channel expression and contractile function in mice with deletion of thyroid hormone receptor alpha or beta. Endocrinology. 2001, 142: 544-550. 10.1210/en.142.2.544. Gloss B, Sayen MR, Trost SU, Bluhm WF, Meyer M, Swanson EA, Usala SJ, Dillmann WH: Altered cardiac phenotype in transgenic mice carrying the delta337 threonine thyroid hormone receptor beta mutant derived from the S family. Endocrinology. 1999, 140: 897-902. 10.1210/en.140.2.897. Taegtmeyer H, Cohen DM: Overestimating glycolysis in rat heart. Am J Physiol Endocrinol Metab. 2002, 283: E1102-1103. (Author reply E1103-1104) Swanson EA, Gloss B, Belke DD, Kaneshige M, Cheng SY, Dillmann WH: Cardiac expression and function of thyroid hormone receptor beta and its PV mutant. Endocrinology. 2003, 144: 4820-4825. 10.1210/en.2003-0522. Eisen MB, Brown PO: DNA arrays for analysis of gene expression. Methods Enzymol. 1999, 303: 179-205. Wang E, Miller LD, Ohnmacht GA, Liu ET, Marincola FM: High-fidelity mRNA amplification for gene profiling. Nat Biotechnol. 2000, 18: 457-459. 10.1038/74546. National Cancer Institute: Center for Cancer Research. [http://nciarray.nci.nih.gov] Genome Institute of Singapore: supplementary information. [http://www.gis.a-star.edu.sg/homepage/toolssup.jsp]