The role of AP-1, NF-κB and ROS/NOS in skin carcinogenesis: The JB6 model is predictive
Tóm tắt
Từ khóa
Tài liệu tham khảo
Allen RG: Oxygen-reactive species and antioxidant responses during development: The metabolic paradox of cellular differentiation. Proc Soc Exp Biol Med 196: 117–129, 1991
Remacle J, Raes M, Toussaint O, Renard P, Rao G: Low levels of reactive oxygen species as modulators of cell function. Mutat Res 316: 103–122, 1995
Allen RG, Tresini M: Oxidative stress and gene regulation. Free Radic Biol Med 28: 463–499, 2000
Cerutti P, Larsson R, Krupitza G, Muehlematter D, Crawford D, Amstad P: Pathophysiological mechanisms of active oxygen. Mutat Res 214: 81–88, 1989
Dalton TP, Li Q, Bittel D, Liang L, Andrews GK: Oxidative stress activates metal-responsive transcription factor-1 binding activity. Occupancy in vivo of metal response elements in the metallothionein-I gene promoter. J Biol Chem 271: 26233–26241, 1996
Dalton TP, Shertzer HG, Puga A: Regulation of gene expression by reactive oxygen. Annu Rev Pharmacol Toxicol 39: 67–101, 1999
Fu YC, Jin XP, Wei SM, Lin HF, Kacew S: Ultraviolet radiation and reactive oxygen generation as inducers of keratinocyte apoptosis: Protective role of tea polyphenols. J Toxicol Environ Health A 61: 177–188, 2000
Cimino F, Esposito F, Ammendola R, Russo T: Gene regulation by reactive oxygen species. Curr Top Cell Reg 35: 123–148, 1997
Oho E, Ohtsuka E, Saburi Y, Ono K, Kikuchi H, Nasu M: Reactive oxygen species production of neutrophils in patients with acute promyelocytic leukemia during treatment with all-trans retinoic acid. Am J Hematol 62: 120–121, 1999
Mantymaa P, Guttorm T, Siitonen T, Saily M, Savolainen ER, Levonen AL, Kinnula V, Koistinen P: Cellular redox state and its relationship to the inhibition of clonal cell growth and the induction of apoptosis during all-trans retinoic acid exposure in acute myeloblastic leukemia cells. Haematologica 85: 238–245, 2000
Dong Z: Effects of food factors on signal transduction pathways. Biofactors 12: 17–28, 2000
Dion LD, De Luca LM, Colburn NH: Phorbol ester-induced anchorage independence and its antagonism by retinoic acid correlates with altered expression of specific glycoproteins. Carcinogenesis 2: 951–958, 1981
Amstad P, Moret R, Cerutti P: Glutathione peroxidase compensates for the hypersensitivity of Cu,Zn-superoxide dismutase overproducers to oxidant stress. J Biol Chem 269: 1606–1609, 1994
Amstad P, Peskin A, Shah G, Mirault ME, Moret R, Zbinden I, Cerutti P: The balance between Cu,Zn-superoxide dismutase and catalase affects the sensitivity of mouse epidermal cells to oxidative stress. Biochemistry 30: 9305–9313, 1991
Cai L, Koropatnick J, Cherian MG: Roles of vitamin C in radiationinduced DNA damage in presence and absence of copper. Chem Biol Interact 137: 75–88, 2001
Cassarino DS, Fall CP, Swerdlow RH, Smith TS, Halvorsen EM, Miller SW, Parks JP, Parker WD Jr, Bennett JP Jr: Elevated reactive oxygen species and antioxidant enzyme activities in animal and cellular models of Parkinson's disease. Biochim Biophys Acta 1362: 77–86, 1997
Cavallo MG, Monetini L, Valente L, Barone F, Beales P, Russo M, Pozzilli P: Glutathione protects a human insulinoma cell line from tumor necrosis factor-alpha-mediated cytotoxicity. Int J Clin Lab Res 27: 44–47, 1997
Davis W Jr, Ronai Z, Tew KD: Cellular thiols and reactive oxygen species in drug-induced apoptosis. J Pharmacol Exp Ther 296: 1–6, 2001
Schulze-Osthoff K, Beyaert R, Vandevoorde V, Haegeman G, Fiers W: Depletion of the mitochondrial electron transport abrogates the cytotoxic and gene-inductive effects of TNF. Embo J 12: 3095–3104, 1993
Pinkus R, Bergelson S, Daniel V: Phenobarbital induction of AP-1 binding activity mediates activation of glutathione S-transferase and quinone reductase gene expression. Biochem J 290: 637–640, 1993
Janssen-Heininger YM, Poynter ME, Baeuerle PA: Recent advances towards understanding redox mechanisms in the activation of nuclear factor kappaB. Free Radic Biol Med 28: 1317–1327, 2000
Surh YJ, Chun KS, Cha HH, Han SS, Keum YS, Park KK, Lee SS: Molecular mechanisms underlying chemopreventive activities of antiinflammatory phytochemicals: Down-regulation of COX-2 and iNOS through suppression of NF-kappa B activation. Mutat Res 480- 481: 243–268, 2001
Primiano T, Sutter TR, Kensler TW: Redox regulation of genes that protect against carcinogens. Comp Biochem Physiol B Biochem Mol Biol 118: 487–497, 1997
Kovacic P, Jacintho JD: Mechanisms of carcinogenesis: Focus on oxidative stress and electron transfer. Curr Med Chem 8: 773–796, 2001
Cerutti PA: Oxy-radicals and cancer. Lancet 344: 862–863, 1994
Colburn NH, Former BF, Nelson KA, Yuspa SH: Tumour promoter induces anchorage independence irreversibly. Nature 281: 589–591, 1979
Colburn NH, Gindhart TD, Hegamyer GA, Blumberg PM, Delclos KB, Magun BE, Lockyer J: Phorbol diester and epidermal growth factor receptors in 12-O-tetradecanoylphorbol-13-acetate-resistant and-sensitive mouse epidermal cells. Cancer Res 42: 3093–3097, 1982
Bernstein LR, Colburn NH: AP1/jun function is differentially induced in promotion-sensitive and resistant JB6 cells. Science 244: 566–569, 1989
Bernstein LR, Bravo R, Colburn NH: 12-O-tetradecanoylphorbol-13-acetate-induced levels of AP-1 proteins: A 46-kDa protein immunoprecipitated by anti-fra-1 and induced in promotion-resistant but not promotion-sensitive JB6 cells. Mol Carcinogen 6: 221–229, 1992
Bernstein LR, Ferris DK, Colburn NH, Sobel ME: A family of mitogenactivated protein kinase-related proteins interacts in vivo with activator protein-1 transcription factor. J Biol Chem 269: 9401–9404, 1994
Frost JA, Geppert TD, Cobb MH, Feramisco JR: A requirement for extracellular signal-regulated kinase (ERK) function in the activation of AP-1 by Ha-Ras, phorbol 12-myristate 13-acetate, and serum. Proc Natl Acad Sci USA 91: 3844–3848, 1994
Huang C, Ma WY, Young MR, Colburn N, Dong Z: Shortage of mitogen-activated protein kinase is responsible for resistance to AP-1 transactivation and transformation in mouse JB6 cells. Proc Natl Acad Sci USA 95: 156–161, 1998
Watts RG, Huang C, Young MR, Li JJ, Dong Z, Pennie WD, Colburn NH: Expression of dominant negative Erk2 inhibits AP-1 transactivation and neoplastic transformation. Oncogene 17: 3493–3498, 1998
Huang C, Ma WY, Dong Z: The extracellular-signal-regulated protein kinases (Erks) are required for UV-induced AP-1 activation in JB6 cells. Oncogene 18: 2828–2835, 1999
Hsu T-C, Nair R, Tulsian P, Hegamyer G, Young MR, Colburn NH: Transformation non-responsive cells owe their resistance to lack of NF-κB activation. Cancer Res 61: 4160–4168, 2001
Young MR, Nair R, Bucheimer N, Tulsian P, Brown NS, Chapp C, Hsu T-C, Colburn NH: Transactivation of Fra-1 and consequent activation of AP-1 occur ERK dependently. Mol Cell Biol 22: 587–598, 2002
Murakami A, Kawabata K, Koshiba T, Gao G, Nakamura Y, Koshimizu K, Ohigashi H: Nitric oxide synthase is induced in tumor promotersensitive, but not tumor promoter-resistant, JB6 mouse epidermal cells cocultured with interferon-gamma-stimulated RAW 264.7 cells: The role of tumor necrosis factor-alpha. Cancer Res 60: 6326–6331, 2000
Amstad PA, Liu H, Ichimiya M, Berezesky IK, Trump BF: Manganese superoxide dismutase expression inhibits soft agar growth in JB6 clone 41 mouse epidermal cells. Carcinogenesis 18: 479–484, 1997
Li JJ, Oberley LW, Fan M, Colburn NH: Inhibition of AP-1 and NFkappaB by manganese-containing superoxide dismutase in human breast cancer cells. Faseb J 12: 1713–1723, 1998
Li JJ, Colburn NH, Oberley LW: Maspin gene expression in tumor suppression induced by overexpressing manganese-containing superoxide dismutase cDNA in human breast cancer cells. Carcinogenesis 19: 833–839, 1998
Nakamura Y, Colburn NH, Gindhart TD: Role of reactive oxygen in tumor promotion: Implication of superoxide anion in promotion of neoplastic transformation in JB-6 cells by TPA. Carcinogenesis 6: 229–235, 1985
Nakamura Y, Gindhart TD, Winterstein D, Tomita I, Seed JL, Colburn NH: Early superoxide dismutase-sensitive event promotes neoplastic transformation in mouse epidermal JB6 cells. Carcinogenesis 9: 203–207, 1988
Dong Z, Birrer MJ, Watts RG, Matrisian LM, Colburn NH: Blocking of tumor promoter-induced AP-1 activity inhibits induced transformation in JB6 mouse epidermal cells. Proc Natl Acad Sci USA 91: 609–613, 1994
Li JJ, Westergaard C, Ghosh P, Colburn NH: Inhibitors of both nuclear factor-kappaB and activator protein-1 activation block the neoplastic transformation response. Cancer Res 57: 3569–3576, 1997
Young MR, Li JJ, Rincon M, Flavell RA, Sathyanarayana BK, Hunziker R, Colburn N: Transgenic mice demonstrate AP-1 (activator protein-1) transactivation is required for tumor promotion. Proc Natl Acad Sci USA 96: 9827–9832, 1999
Liu Y, Duysen E, Yaktine AL, Au A, Wang W, Birt DF: Dietary energy restriction inhibits ERK but not JNK or p38 activity in the epidermis of SENCAR mice. Carcinogenesis 22: 607–612, 2001
Huang C, Ma WY, Dawson MI, Rincon M, Flavell RA, Dong Z: Blocking activator protein-1 activity, but not activating retinoic acid response element, is required for the antitumor promotion effect of retinoic acid. Proc Natl Acad Sci USA 94: 5826–5830, 1997
Moore RJ, Owens DM, Stamp G, Arnott C, Burke F, East N, Holdsworth H, Turner L, Rollins B, Pasparakis M, Kollias G, Balkwill F: Mice deficient in tumor necrosis factor-alpha are resistant to skin carcinogenesis. Nat Med 5: 828–831, 1999
Li JJ, Rhim JS, Schlegel R, Vousden KH, Colburn NH: Expression of dominant negative Jun inhibits elevated AP-1 and NF-kappaB transactivation and suppresses anchorage independent growth of HPV immortalized human keratinocytes. Oncogene 16: 2711–2721, 1998
Zhao Y, Xue Y, Oberley TD, Kiningham KK, Lin SM, Yen HC, Majima H, Hines J, St Clair D: Overexpression of manganese superoxide dismutase suppresses tumor formation by modulation of activator protein-1 signaling in a multistage skin carcinogenesis model. Cancer Res 61: 6082–6088, 2001
Colburn NH, Smith BM: Genes that cooperate with tumor promoters in transformation. J Cell Biochem 34: 129–142, 1987
Bernstein LR, Ben-Ari ET, Simek SL, Colburn NH: Gene regulation and genetic susceptibility to neoplastic transformation: AP-1 and p80 expression in JB6 cells. Environ Health Perspect 93: 111–119, 1991
Bernstein L, Ben-Ari E, Simek S, Colburn N: Gene regulation during promotion of neoplastic transformation in mouse JB6 cells. Environ Health Perspect 93: 111–119, 1991
Colburn N: Gene regulation by active oxygen and other stress inducers: Role in tumor promotion and progression. In L. Spatz, A. Bloom (eds). Biological Consequences of Oxidative Stress: Implications for Cardiovascular Disease and Carcinogenesis. Oxford University Press, Oxford, UK, 1992, pp 121–137
Colburn NH, Wendel E, Srinivas L: Responses of preneoplastic epidermal cells to tumor promoters and growth factors: Use of promoterresistant variants for mechanism studies. J Cell Biochem 18: 261–270, 1982
Cmarik JL, Colburn NH: Use of mouse JB6 cells to identify molecular targets and novel agents for prevention of carcinogenesis. In: H. iOhigashi (ed). Proc. International Conf. on Food Factors: Chemistry and Cancer Prevention. Springer-Verlag, Tokyo 1997, pp 67–76
Singh N, Sun Y, Nakamura K, Smith MR, Colburn NH: C-JUN/AP-1 as possible mediators of tumor necrosis factor-alpha-induced apoptotic response in mouse JB6 tumor cells. Oncol Res 7: 353–362, 1995
Ben-Ari ET, Bernstein LR, Colburn NH: Differential c-jun expression in response to tumor promoters in JB6 cells sensitive or resistant to neoplastic transformation. Mol Carcinogen 5: 62–74, 1992
Li JJ, Dong Z, Dawson MI, Colburn NH: Inhibition of tumor promoterinduced transformation by retinoids that transrepress AP-1 without transactivating retinoic acid response element. Cancer Res 56: 483–489, 1996
Watts RG, Ben-Ari ET, Bernstein LR, Birrer MJ, Winterstein D, Wendel E, Colburn NH: c-jun and multistage carcinogenesis: Association of overexpression of introduced c-jun with progression toward a neoplastic endpoint in mouse JB6 cells sensitive to tumor promoter-induced transformation. Mol Carcinogen 13: 27–36, 1995
Bernstein LR, Walker SE: Tumor promotion resistant cells are deficient in AP-1 DNA binding, JunD DNA binding and JunD expression and form different AP-1-DNA complexes than promotion sensitive cells. Biochim Biophys Acta 1489: 263–280, 1999
Lu YP, Chang RL, Lou YR, Huang MT, Newmark HL, Reuhl KR, Conney AH: Effect of curcumin on 12-O-tetradecanoylphorbol-13-acetate-and ultraviolet B light-induced expression of c-Jun and c-Fos in JB6 cells and in mouse epidermis. Carcinogenesis 15: 2363–2370, 1994
Dong Z, Ma W, Huang C, Yang CS: Inhibition of tumor promoter-induced activator protein 1 activation and cell transformation by tea polyphenols, (- )-epigallocatechin gallate, and theaflavins. Cancer Res 57: 4414–4419, 1997
Nomura M, Ma W, Chen N, Bode AM, Dong Z: Inhibition of 12-Otetradecanoylphorbol-13-acetate-induced NF-kappaB activation by tea polyphenols, (- )-epigallocatechin gallate and theaflavins. Carcinogenesis 21: 1885–1890, 2000
Nomura M, Ma WY, Huang C, Yang CS, Bowden GT, Miyamoto K, Dong Z: Inhibition of ultraviolet B-induced AP-1 activation by theaflavins from black tea. Mol Carcinog 28: 148–155, 2000
Huang C, Ma WY, Ryan CA, Dong Z: Proteinase inhibitors I and II from potatoes specifically block UV-induced activator protein-1 activation through a pathway that is independent of extracellular signalregulated kinases, c-Jun N-terminal kinases, and P38 kinase. Proc Natl Acad Sci USA 94: 11957–11962, 1997
Liu G, Chen N, Kaji A, Bode AM, Ryan CA, Dong Z: Proteinase inhibitors I and II from potatoes block UVB-induced AP-1 activity by regulating the AP-1 protein compositional patterns in JB6 cells. Proc Natl Acad Sci USA 98: 5786–5791, 2001
Bode AM, Ma WY, Surh YJ, Dong Z: Inhibition of epidermal growth factor-induced cell transformation and activator protein 1 activation by. Cancer Res 61: 850–853, 2001
Sang S, He K, Liu G, Zhu N, Cheng X, Wang M, Zheng Q, Dong Z, Ghai G, Rosen RT, Ho CT: A new unusual iridoid with inhibition of activator protein-1 (AP-1) from the leaves of Morinda citrifolia L. Org Lett 3: 1307–1309, 2001
Liu G, Bibus DM, Bode AM, Ma WY, Holman RT, Dong Z: Omega 3 but not omega 6 fatty acids inhibit AP-1 activity and cell transformation in JB6 cells. Proc Natl Acad Sci USA 98: 7510–7515, 2001
Liu G, Bode A, Ma WY, Sang S, Ho CT, Dong Z: Two novel glycosides from the fruits of Morinda citrifolia (noni) inhibit AP-1 transactivation and cell transformation in the mouse epidermal JB6 cell line. Cancer Res 61: 5749–5756, 2001
Dong Z, Huang C, Brown RE, Ma WY: Inhibition of activator protein 1 activity and neoplastic transformation by aspirin. J Biol Chem 272: 9962–9970, 1997
Dong Z, Crawford HC, Lavrovsky V, Taub D, Watts R, Matrisian LM, Colburn NH: A dominant negative mutant of jun blocking 12-Otetradecanoylphorbol-13-acetate-induced invasion in mouse keratinocytes. Mol Carcinogen 19: 204–212, 1997
Stein B, Baldwin AS, Jr, Ballard DW, Greene WC, Angel P, Herrlich P: Cross-coupling of the NF-kappa B p65 and Fos/Jun transcription factors produces potentiated biological function. Embo J 12: 3879–3891, 1993
Boulton TG, Yancopoulos GD, Gregory JS, Slaughter C, Moomaw C, Hsu J, Cobb MH: An insulin-stimulated protein kinase similar to yeast kinases involved in cell cycle control. Science 249: 64–67, 1990
Boulton TG, Nye SH, Robbins DJ, Ip NY, Radziejewska E, Morgenbesser SD, DePinho RA, Panayotatos N, Cobb MH, Yancopoulos GD: ERKs: A family of protein-serine/threonine kinases that are activated and tyrosine phosphorylated in response to insulin and NGF. Cell 65: 663–675, 1991
Davis RJ: MAPKs: New JNK expands the group. Trends Biochem Sci 19: 470–473, 1994
Kyriakis JM, Banerjee P, Nikolakaki E, Dai T, Rubie EA, Ahmad MF, Avruch J, Woodgett JR: The stress-activated protein kinase subfamily of c-Jun kinases. Nature 369: 156–160, 1994
Robbins DJ, Zhen E, Cheng M, Xu S, Vanderbilt CA, Ebert D, Garcia C, Dang A, Cobb MH: Regulation and properties of extracellular signal-regulated protein kinases 1, 2, and 3 (editorial). J Am Soc Nephrol 4: 1104–1110, 1993
Higgins KA, Perez JR, Coleman TA, Dorshkind K, McComas WA, Sarmiento UM, Rosen CA, Narayanan R: Antisense inhibition of the p65 subunit of NF-kappa B blocks tumorigenicity and causes tumor regression. Proc Natl Acad Sci USA 90: 9901–9905, 1993
Gilmore TD, Koedood M, Piffat KA, White DW: Rel/NF-kappaB/ IkappaB proteins and cancer. Oncogene 13: 1367–1378, 1996
Baldwin AS Jr: The NF-kappa B and I kappa B proteins: New discoveries and insights. Annu Rev Immunol 14: 649–683, 1996
Finco TS, Westwick JK, Norris JL, Beg AA, Der CJ, Baldwin AS Jr: Oncogenic Ha-Ras-induced signaling activates NF-kappaB transcriptional activity, which is required for cellular transformation. J Biol Chem 272: 24113–24116, 1997
Luque I, Gelinas C: Rel/NF-kappa B and I kappa B factors in oncogenesis. Semin Cancer Biol 8: 103–111, 1997
Visconti R, Cerutti J, Battista S, Fedele M, Trapasso F, Zeki K, Miano MP, de Nigris F, Casalino L, Curcio F, Santoro M, Fusco A: Expression of the neoplastic phenotype by human thyroid carcinoma cell lines requires NFkappaB p65 protein expression. Oncogene 15: 1987–1994, 1997
Van Antwerp DJ, Martin SJ, Kafri T, Green DR, Verma IM: Suppression of TNF-alpha-induced apoptosis by NF-kappaB. Science 274: 787–789, 1996
Latimer M, Ernst MK, Dunn LL, Drutskaya M, Rice NR: The N-terminal domain of IkappaB alpha masks the nuclear localization signal(s) of p50 and c-Rel homodimers. Mol Cell Biol 18: 2640–2649, 1998
Li J-J, Cao Y, Young MR, Colburn NH: Induced expression of dominant negative cJun down regulates NF-κB and AP-1 target genes and suppresses tumor phenotype in human keratinocytes. Mol Carcinogen 29: 159–169, 2000
Cerutti P, Ghosh R, Oya Y, Amstad P: The role of the cellular antioxidant defense in oxidant carcinogenesis. Environ Health Perspect 102(suppl 10): 123–129, 1994
Jain PT, Chang SH, Berezesky IK, Amstad P, Cerutti PA, Trump BF: Differential cytotoxicity in mouse epidermal JB6 cells: A potential mechanism for oxidant tumor promotion. Mol Carcinogen 11: 164–169, 1994
Huang C, Zhang Z, Ding M, Li J, Ye J, Leonard SS, Shen HM, Butterworth L, Lu Y, Costa M, Rojanasakul Y, Castranova V, Vallyathan V, Shi X: Vanadate induces p53 transactivation through hydrogen peroxide and causes apoptosis. J Biol Chem 275: 32516–32522, 2000
Crawford DR, Amstad PA, Foo DD, Cerutti PA: Constitutive and phorbol-myristate-acetate regulated antioxidant defense of mouse epidermal JB6 cells. Mol Carcinogen 2: 136–143, 1989
Huang C, Li J, Ding M, Leonard SS, Wang L, Castranova V, Vallyathan V, Shi X: UV Induces phosphorylation of protein kinase B (Akt) at Ser-473 and Thr-308 in mouse epidermal Cl 41 cells through hydrogen peroxide. J Biol Chem 276: 40234–40240, 2001
Ding M, Li JJ, Leonard SS, Ye JP, Shi X, Colburn NH, Castranova V, Vallyathan V: Vanadate-induced activation of activator protein-1: Role of reactive oxygen species. Carcinogenesis 20: 663–668, 1999
Ding M, Shi X, Lu Y, Huang C, Leonard S, Roberts J, Antonini J, Castranova V, Vallyathan V: Induction of activator protein-1 through reactive oxygen species by crystalline silica in JB6 cells. J Biol Chem 276: 9108–9114, 2001
Perrella MA, Pellacani A, Wiesel P, Chin MT, Foster LC, Ibanez M, Hsieh CM, Reeves R, Yet SF, Lee ME: High mobility group-I (Y) protein facilitates nuclear factor-kappaB binding and transactivation of the inducible nitric-oxide synthase promoter/enhancer. J Biol Chem 274: 9045–9052, 1999
Pellacani A, Chin MT, Wiesel P, Ibanez M, Patel A, Yet SF, Hsieh CM, Paulauskis JD, Reeves R, Lee ME, Perrella MA: Induction of high mobility group-I (Y) protein by endotoxin and interleukin-1beta in vascular smooth muscle cells. Role in activation of inducible nitric oxide synthase. J Biol Chem 274: 1525–1532, 1999
Bussemakers MJ, van de Ven WJ, Debruyne FM, Schalken JA: Identification of high mobility group protein I (Y) as potential progression marker for prostate cancer by differential hybridization analysis. Cancer Res 51: 606–611, 1991
Giancotti V, Buratti E, Perissin L, Zorzet S, Balmain A, Portella G, Fusco A, Goodwin GH: Analysis of the HMGI nuclear proteins in mouse neoplastic cells induced by different procedures. Exp Cell Res 184: 538–545, 1989
Tamimi Y, van der Poel HG, Denyn MM, Umbas R, Karthaus HF, Debruyne FM, Schalken JA: Increased expression of high mobility group protein I (Y) in high grade prostatic cancer determined by in situ hybridization. Cancer Res 53: 5512–5516, 1993
Tallini G, Dal Cin P: HMGI (Y) and HMGI-C dysregulation: A common occurrence in human tumors. Adv Anat Pathol 6: 237–246, 1999
Reeves R, Edberg DD, Li Y: Architectural transcription factor HMGI (Y) promotes tumor progression and mesenchymal transition of human epithelial cells. Mol Cell Biol 21: 575–594, 2001
Cmarik JL, Li Y, Ogram SA, Min H, Reeves R, Colburn NH: Tumor promoter induces high mobility group HMG-Y protein expression in transformation-sensitive but not-resistant cells. Oncogene 16: 3387–3396, 1998
Cmarik JL, Min H, Hegamyer G, Zhan S, Kulesz-Martin M, Yoshinaga H, Matsuhashi S, Colburn NH: Differentially expressed protein Pdcd4 inhibits tumor promoter-induced neoplastic transformation. Proc Natl Acad Sci USA 96: 14037–14042, 1999
Yang HS, Jansen AP, Nair R, Shibahara K, Verma AK, Cmarik JL, Colburn NH: A novel transformation suppressor, Pdcd4, inhibits AP-1 transactivation but not NF-kappaB or ODC transactivation. Oncogene 20: 669–676, 2001
Jansen AP, Colburn NH, Verma AK: Tumor promoter-induced ornithine decarboxylase gene expression occurs independently of AP-1 activation. Oncogene 18: 5806–5813, 1999
Smith JH, Denhardt DT: Molecular cloning of a tumor promoter-inducible mRNA found in JB6 mouse epidermal cells: Induction is stable at high, but not at low, cell densities. J Cell Biochem 34: 13–22, 1987
Craig AM, Smith JH, Denhardt DT: Osteopontin, a transformationassociated cell adhesion phosphoprotein, is induced by 12-O-tetradecanoylphorbol 13-acetate in mouse epidermis. J Biol Chem 264: 9682–9689, 1989
Chang PL, Prince CW: 1 alpha,25-Dihydroxyvitamin D3 enhances 12-O-tetradecanoylphorbol-13-acetate-induced tumorigenic transformation and osteopontin expression in mouse JB6 epidermal cells. Cancer Res 53: 2217–2220, 1993
Chang PL, Chambers AF: Transforming JB6 cells exhibit enhanced integrin-mediated adhesion to osteopontin. J Cell Biochem 78: 8–23, 2000
Cmarik JL, Hegamyer G, Gerrard B, Dean M, Colburn NH: cDNA cloning and mapping of mouse pleckstrin (Plek), a gene upregulated in transformation-resistant cells. Genomics 66: 204–212, 2000
Lemmon MA, Ferguson KM: Pleckstrin homology domains. Curr Top Microbiol Immunol 228: 39–74, 1998
Tyers M, Haslam RJ, Rachubinski RA, Harley CB: Molecular analysis of pleckstrin: The major protein kinase C substrate of platelets. J Cell Biochem 40: 133–145, 1989
Sun Y, Hegamyer G, Colburn NH: Molecular cloning of five messenger RNAs differentially expressed in preneoplastic or neoplastic JB6 mouse epidermal cells: One is homologous to human tissue inhibitor of metalloproteinases-3. Cancer Res 54: 1139–1144, 1994
Sun Y, Hegamyer G, Kim H, Sithanandam K, Li H, Watts R, Colburn NH: Molecular cloning of mouse tissue inhibitor of metalloproteinases-3 and its promoter. Specific lack of expression in neoplastic JB6 cells may reflect altered gene methylation. J Biol Chem 270: 19312–19319, 1995
Pennie WD, Hegamyer GA, Young MR, Colburn NH: Specific methylation events contribute to the transcriptional repression of the mouse tissue inhibitor of metalloproteinases-3 gene in neoplastic cells. Cell Growth Diff 10: 279–286, 1999
Sun Y, Kim H, Parker M, Stetler-Stevenson WG, Colburn NH: Lack of suppression of tumor cell phenotype by overexpression of TIMP-3 in mouse JB6 tumor cells identification of a transfectant with increased tumorigenicity and invasiveness. Anticancer Res 16: 1–7, 1996
Bian J, Wang Y, Smith MR, Kim H, Jacobs C, Jackman J, Kung HF, Colburn NH, Sun Y: Suppression of in vivo tumor growth and induction of suspension cell death by tissue inhibitor of metalloproteinases (TIMP)-3. Carcinogenesis 17: 1805–1811, 1996
Cmarik JL, Herschman H, Colburn NH: Preferential primary-response gene expression in promotion-resistant vs. promotion-sensitive JB6 cells. Mol Carcinogen 11: 115–124, 1994
Eto I: Promotion-sensitive epidermal and mammary epithelial cells maintained in suspension over agarose. Cell Prolif 31: 71–92, 1998
Huang C, Ma WY, Dong Z: Requirement for phosphatidylinositol 3-kinase in epidermal growth factor-induced AP-1 transactivation and transformation in JB6 P+ cells. Mol Cell Biol 16: 6427–6435, 1996
Huang C, Schmid PC, Ma WY, Schmid HH, Dong Z: Phosphatidylinositol-3 kinase is necessary for 12-O-tetradecanoylphorbol-13-acetate-induced cell transformation and activated protein 1 activation. J Biol Chem 272: 4187–4194, 1997
Schmidt KN, Traenckner EB, Meier B, Baeuerle PA: Induction of oxidative stress by okadaic acid is required for activation of transcription factor NF-kappa B. J Biol Chem 270: 27136–27142, 1995
Schmidt KN, Amstad P, Cerutti P, Baeuerle PA: Identification of hydrogen peroxide as the relevant messenger in the activation pathway of transcription factor NF-kappaB. Adv Exp Med Biol 387: 63–68, 1996