On a tensor-analogue of the Schur product

Positivity - Tập 20 - Trang 621-624 - 2015
K. Sumesh1, V. S. Sunder1
1Institute of Mathematical Sciences, Chennai, India

Tóm tắt

We consider the tensorial Schur product $$R \circ ^\otimes S = [r_{ij} \otimes s_{ij}]$$ for $$R \in M_n(\mathcal {A}), S\in M_n(\mathcal {B}),$$ with $$\mathcal {A}, \mathcal {B}~\text{ unital }~ C^*$$ -algebras, verify that such a ‘tensorial Schur product’ of positive operators is again positive, and then use this fact to prove (an apparently marginally more general version of) the classical result of Choi that a linear map $$\phi :M_n \rightarrow M_d$$ is completely positive if and only if $$[\phi (E_{ij})] \in M_n(M_d)^+$$ , where of course $$\{E_{ij}:1 \le i,j \le n\}$$ denotes the usual system of matrix units in $$M_n (:= M_n(\mathbb C))$$ . We also discuss some other corollaries of the main result.

Tài liệu tham khảo

Choi, M.D.: Completely positive linear maps on complex matrices. Linear Algebra Appl. 10, 285–290 (1975) Choi, M.D., Effros, E.G.: Injectivity and operator spaces. J. Funct. Anal. 24(2), 156–209 (1977) Pisier, G.: Introduction to Operator Space Theory. LMS Lecture Note Series 294. Cambridge University Press, Cambridge (2003)