Quasi-A Priori Truncation Error Estimation in the DGSEM

Springer Science and Business Media LLC - Tập 64 - Trang 425-455 - 2014
Gonzalo Rubio1, François Fraysse1, David A. Kopriva2, Eusebio Valero1
1E.T.S.I. Aeronáuticos, Universidad Politécnica de Madrid, Ciudad Universitaria, Madrid, Spain
2Department of Mathematics, The Florida State University, Tallahassee, USA

Tóm tắt

In this paper we show how to accurately perform a quasi-a priori estimation of the truncation error of steady-state solutions computed by a discontinuous Galerkin spectral element method. We estimate the spatial truncation error using the $$\tau $$ -estimation procedure. While most works in the literature rely on fully time-converged solutions on grids with different spacing to perform the estimation, we use non time-converged solutions on one grid with different polynomial orders. The quasi-a priori approach estimates the error while the residual of the time-iterative method is not negligible. Furthermore, the method permits one to decouple the surface and the volume contributions of the truncation error, and provides information about the anisotropy of the solution as well as its rate of convergence in polynomial order. First, we focus on the analysis of one dimensional scalar conservation laws to examine the accuracy of the estimate. Then, we extend the analysis to two dimensional problems. We demonstrate that this quasi-a priori approach yields a spectrally accurate estimate of the truncation error.

Tài liệu tham khảo

Acosta, C., Kopriva, D.A.: Discontinuous Galerkin spectral element approximations on moving meshes. J. Comput. Phys. 230(5), 1876–1902 (2011) Berger, M.J.: Adaptive finite difference methods in fluid dynamics. Technical report, Courant Institute of Mathematical Sciences, New York University, New York (1987) Bernert, K.: \(\tau \)-extrapolation-theoretical foundation, numerical experiment, and application to Navier–Stokes equations. SIAM J. Sci. Comput. 18, 460–478 (1997) Black, K.: A conservative spectral element method for the approximation of compressible fluid flow. Kybernetika 35(1), 133–146 (1999) Black, K.: Spectral element approximation of convection–diffusion type problems. Appl. Numer. Math. 33(1–4), 373–379 (2000) Brandt, A., Livne, O.: Multigrid Techniques: 1984 Guide with Applications to Fluid Dynamics. SIAM, Philadelphia (1984) Canuto, C., Hussaini, M.Y., Quarteroni, A., Zang, T.A.: Spectral Methods. Fundamentals in Single Domains. Springer, Berlin (2006) Canuto, C., Hussaini, M.Y., Quarteroni, A., Zang, T.A.: Spectral Methods. Evolution to Complex Geometries and Applications to Fluid Dynamics. Springer, Berlin (2007) Castel, N., Cohen, G., Durufle, M.: Application of discontinuous Galerkin spectral method on hexahedral elements for aeroacoustic. J. Comput. Acoust. 17(02), 175 (2009) Choudhary, A., Roy, C.J.: Structured mesh r-refinement using truncation error equidistribution for 1D and 2D Euler problems. In: 21st AIAA Computational Fluid Dynamics Conference. American Institute of Aeronautics and Astronautics, Reston, Virginia (2013) Cockburn, B., Karniadakis, G.E., Shu, C.W.: The Development of Discontinuous Galerkin Methods. Springer, Berlin (2000) Cockburn, B., Shu, C.W.: The Runge–Kutta discontinuous Galerkin method for conservation laws V: multidimensional systems. J. Comput. Phys. 141(2), 199–224 (1998) Deng, S.: Numerical simulation of optical coupling and light propagation in coupled optical resonators with size disorder. Appl. Numer. Math. 57(5–7), 475–485 (2007) Deng, S., Cai, W., Astratov, V.: Numerical study of light propagation via whispering gallery modes in microcylinder coupled resonator optical waveguides. Opt. Express 12(26), 6468–6480 (2004) Eymard, R., Gallouët, T., Herbin, R.: Finite volume methods. In: Ciarlet, P.G., Lions, J.L. (eds.) Handbook of Numerical Analysis, vol. VII, pp. 729–1020. North-Holland, Amsterdam (2000) Fagherazzi, S., Furbish, D.J., Rasetarinera, P., Hussaini, M.Y.: Application of the discontinuous spectral Galerkin method to groundwater flow. Adv. Water Resour. 27(2), 129–140 (2004) Fagherazzi, S., Rasetarinera, P., Hussaini, M.Y.: Numerical solution of the dam-break problem with a discontinuous Galerkin method. J. Hydraul. Eng. 130(6), 532–539 (2004) Fraysse, F., De Vicente, J., Valero, E.: The estimation of truncation error by \(\tau \)-estimation revisited. J. Comput. Phys. 231, 3457–3482 (2012) Fraysse, F., Valero, E., Rubio, G.: Quasi-a priori truncation error estimation and higher order extrapolation for non-linear partial differential equations. J. Comput. Phys. 253, 389–404 (2013) Fulton, S.R.: On the accuracy of multigrid truncation error estimates. Electron. Trans. Numer. Anal. 15, 29–37 (2003) Georgoulis, E.H.: Discontinuous Galerkin methods on shape-regular and anisotropic meshes. Ph.D. thesis (2003) Giraldo, F.X., Hesthaven, J.S., Warburton, T.: Nodal high-order discontinuous Galerkin methods for the spherical shallow water equations. J. Comput. Phys. 181(2), 499–525 (2002) Giraldo, F.X., Restelli, M.: A study of spectral element and discontinuous Galerkin methods for the Navier–Stokes equations in nonhydrostatic mesoscale atmospheric modeling: equation sets and test cases. J. Comput. Phys. 227(8), 3849–3877 (2008) Hesthaven, J.S.: High-order accurate methods for time-domain electromagnetics. Adv. Imaging Electron Phys. 127, 59–125 (2003) Hesthaven, J.S., Warburton, T.: Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications. Springer, Berlin (2008) Hindenlang, F., Gassner, G.J., Altmann, C., Beck, A., Staudenmaier, M., Munz, C.D.: Explicit discontinuous Galerkin methods for unsteady problems. Comput. Fluids 61(C), 86–93 (2012) Kopriva, D.A.: Metric identities and the discontinuous spectral element method on curvilinear meshes. J. Sci. Comput. 26(3), 301–327 (2006) Kopriva, D.A.: Implementing Spectral Methods for Partial Differential Equations: Algorithms for Scientists and Engineers. Scientific Computation. Springer, Berlin (2009) Kopriva, D.A., Woodruff, S.L., Hussaini, M.Y.: Computation of electromagnetic scattering with a non-conforming discontinuous spectral element method. Int. J. Numer. Methods Eng. 53(1), 105–122 (2002) Löhner, R.: Mesh adaptation in fluid mechanics. Eng. Fract. Mech. 50(56), 819–847 (1995). doi:10.1016/0013-7944(94)E0062-L. http://www.sciencedirect.com/science/article/pii/0013794494E0062L Lu, T., Zhang, P., Cai, W.: Discontinuous Galerkin methods for dispersive and lossy Maxwell’s equations and PML boundary conditions. J. Comput. Phys. 200(2), 549–580 (2004) Mao, S., Luongo, C.A., Kopriva, D.A.: Discontinuous Galerkin spectral element simulation of quench propagation in superconducting magnets. IEEE Trans. Appl. Supercond. 15(2), 1675–1678 (2005) Oberkampf, W.L., Roy, C.J.: Verification and Validation in Scientific Computing. Cambridge University Press, Cambridge (2010) Phillips, T., Roy, C.: Residual methods for discretization error estimation. In: 20th AIAA Computational Fluid Dynamics Conference. American Institute of Aeronautics and Astronautics, Reston, Virigina (2012) Rasetarinera, P., Hussaini, M.Y.: An efficient implicit discontinuous spectral Galerkin method. J. Comput. Phys. 172(2), 718–738 (2001) Rasetarinera, P., Kopriva, D.A., Hussaini, M.Y.: Discontinuous spectral element solution of acoustic radiation from thin airfoils. AIAA J. 39(11), 2070–2075 (2001) Reed, W.H., Hill, T.R.: Triangular mesh methods for the neutron transport equation. Los Alamos Report LA-UR-73-479 (1973) Restelli, M., Giraldo, F.X.: A conservative discontinuous Galerkin semi-implicit formulation for the Navier–Stokes equations in nonhydrostatic mesoscale modeling. SIAM J. Sci. Comput. 31(3), 2231–2257 (2009) Roache, P.J.: Verification and Validation in Computational Science and Engineering. Hermosa Publishers, Socorro (1998) Roy, C.J.: Review of discretization error estimators in scientific computing. AIAA Pap. 126, 0126 (2010) Rubio, G., Fraysse, F., de Vicente, J., Valero, E.: The estimation of truncation error by \(\tau \)-estimation for Chebyshev spectral collocation method. J. Sci. Comput. 57(1), 146–173 (2013) Stanescu, D., Hussaini, M., Farassat, F.: Aircraft engine noise scattering—a discontinuous spectral element approach. In: 40th AIAA Aerospace Sciences Meeting and Exhibit. American Institute of Aeronautics and Astronautics, Reston, VA (2012) Stanescu, D., Xu, J., Hussaini, M.Y., Farassat, F.: Computation of engine noise propagation and scattering off an aircraft. Int. J. Aeroacoust. 1(4), 403–420 (2009) Syrakos, A., Efthimiou, G., Bartzis, J.G., Goulas, A.: Numerical experiments on the efficiency of local grid refinement based on truncation error estimates. J. Comput. Phys. 231, 6725–6753 (2012) Syrakos, A., Goulas, A.: Finite volume adaptive solutions using SIMPLE as smoother. Int. J. Numer. Methods Fluids 52, 1215–1245 (2006) Toro, E.F.: Riemann Solvers and Numerical Methods for Fluid Dynamics. A Practical Introduction. Springer, Berlin (2009) Williamson, J.H.: Low-storage Runge–Kutta schemes. J. Comput. Phys. 35(1), 48–56 (1980) Zhang, M., Shu, C.W.: An analysis of and a comparison between the discontinuous Galerkin and the spectral finite volume methods. Comput. Fluids 34, 581–592 (2005) Zienkiewicz, O.C.: The background of error estimation and adaptivity in finite element computations. Comput. Methods Appl. Mech. Eng. 195(4–6), 207–213 (2006)